Residual Stress, Thermomechanics and Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9 Proceedings of the 2016 Annual Conference on Experimental and Applied Mechanics

Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the ninth volume of ten from the Conference, brings together contributions to this im...

Full description

Saved in:
Bibliographic Details
Main Authors Quinn, Simon, Balandraud, Xavier
Format eBook
LanguageEnglish
Published Cham Springer International Publishing AG 2016
Springer International Publishing
Edition1
SeriesConference Proceedings of the Society for Experimental Mechanics Series
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • Chapter 13: Predicting Residual Stress on X-ray Tomographed Complex Bi-Layer Geometries using 3D Finite Element Analysis -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.3 Results and Discussion -- 13.3.1 Non Uniform Thickness Measurement From Micro-X-ray Tomography -- 13.3.2 FE Model Development From Micro-Computed Tomography -- 13.4 Conclusions -- References -- Chapter 14: Combining Hole-Drilling and Ring-Core Techniques -- 14.1 Introduction -- 14.2 Calibration Coefficients -- 14.3 Numerical Tests -- 14.3.1 Reference Data Generation -- 14.3.2 Results -- 14.4 Conclusions -- References -- Chapter 15: A Low-Cost Residual Stress Measuring Instrument -- 15.1 Introduction -- 15.2 The Raspberry Pi Camera Module -- 15.3 Drilling the Hole -- 15.4 Conclusions -- References -- Chapter 16: Non-Destructive Internal Lattice Strain Measurement Using High Energy Synchrotron Radiation -- 16.1 Introduction -- 16.2 Background -- 16.3 Experiments -- 16.4 Results and Discussion -- 16.5 Conclusions -- References -- Chapter 17: Discussion on X-Ray and HDM Residual Stress Measurements -- 17.1 Introduction -- 17.2 Material and Methods -- 17.2.1 Hole Drilling Method -- 17.2.2 X-Ray Diffraction Method -- 17.3 Results -- 17.4 Conclusion -- References -- 18: Reducing Full-Field Identification Cost by Using Quasi-Newton Methods -- 18.1 Introduction -- 18.2 Methods -- 18.3 Test Case -- 18.4 Discussion and Conclusions -- References -- 19: Parameter Identification of Nonlinear Viscoelastic Material Model Using Finite Element-Based Inverse Analysis -- 19.1 Introduction -- 19.2 Experimental Details -- 19.2.1 Materials -- 19.2.2 Nanoindentation -- 19.2.3 Material Model -- 19.2.4 Finite Element Modeling -- 19.2.5 Design of Experiments for Sensitivity Analysis -- 19.2.6 POD-RBF Surrogate Model -- 19.2.7 Genetic Algorithm -- 19.3 Results and Discussion
  • 19.3.1 Sensitivity Analysis -- 19.3.2 Surrogate Model Training and Inverse Analysis -- 19.4 Conclusion -- References -- 20: Stiffness Heterogeneity of Multiply Paperboard Examined with VFM -- 20.1 Introduction -- 20.2 Material and Testing -- 20.3 Virtual Fields Method -- 20.4 Results and Discussion -- 20.5 Conclusion -- References -- Chapter 21: Rigid-Body Motion Tolerance for Industrial Helical CT Measurements of Logs -- 21.1 Introduction -- 21.2 Feature-Tailored Voxel CT Scanning -- 21.3 Log Motion Compensation -- 21.4 Synthetic Data Validation -- 21.5 Real Data Results and Discussion -- 21.6 Conclusion -- References -- Chapter 22: Development and Experimental Validation of Thermally Stable Unimorph SMP Actuators Incorporating Transverse Curvat... -- 22.1 Introduction -- 22.2 Fabrication Methods, Experimental Set-Ups, and Procedures -- 22.2.1 Materials and Specimen Fabrication -- 22.2.2 Digital Image Correlation and Experimental Set-up -- 22.2.3 Experimental Procedure -- 22.3 Theoretical Calculations -- 22.4 Experimental Results -- 22.5 Conclusion -- References -- Chapter 23: Identification of Constitutive Model Parameters in Hopkinson Bar Testsƒ -- 23.1 Introduction -- 23.2 Theoretical Background -- 23.3 Experimental Setup and Results -- 23.4 Finite Element Model Updating and/or Fitting by FEMU -- 23.5 Results and Discussion -- 23.6 Conclusion -- References
  • Intro -- Preface -- Contents -- Chapter 1: Fatigue Behaviour of Stainless Steels: A Multi-parametric Approach -- 1.1 Introduction -- 1.2 Theoretical Framework -- 1.3 Experimental Setup -- 1.4 Results -- 1.5 Discussion -- 1.6 Conclusions -- References -- Chapter 2: Measurement of Mechanical Dissipation in SMAs by Infrared Thermography -- 2.1 Introduction -- 2.2 Experimental Conditions and Processing -- 2.3 Preliminary Tests -- 2.4 Results -- 2.5 Conclusion -- References -- Chapter 3: The Effect of Microstructure on Energy Dissipation in 316L Stainless Steel -- 3.1 Introduction -- 3.2 Energy Dissipation -- 3.3 Experimental Work -- 3.4 Data Processing, Detection Threshold, and Preliminary Result -- 3.5 Conclusion and Future Work -- References -- Chapter 4: Large Area Nondestructive Evaluation of a Fatigue Loaded Composite Structure -- 4.1 Introduction -- 4.2 Sample -- 4.3 Inspection Systems -- 4.4 Measurement Results -- 4.5 Mapping Acoustic Emission Events onto Thermal Imagery -- 4.6 Conclusions -- References -- Chapter 5: Sensitivity Analysis of Hybrid Thermoelastic Techniques -- 5.1 Introduction to Hybrid-TSA -- 5.2 Airy Stress Function -- 5.3 Numerical Experiment -- 5.3.1 Effect of the Number of TSA Points, m -- 5.3.2 Number of Airy Coefficients, k -- 5.3.3 Effect of Noise -- 5.4 Conclusion and Future Work -- References -- Chapter 6: Determining Stress Intensity Factors Using Hybrid Thermoelastic Analysis -- 6.1 Introduction -- 6.2 Description of the SIF Calculation Algorithm -- 6.3 Algorithm Inputs -- 6.4 Crack Tip Position Estimation and Point Coordinates Assignment -- 6.5 Model Validity Limits Verification -- 6.6 Error Function Construction and Minimization -- 6.7 SIF Calculation and Real Crack Tip Location -- 6.8 Description of the Equipment -- 6.9 Specimen -- 6.10 Results -- 6.11 Conclusions -- References
  • Chapter 7: Stress Analysis of a Finite Orthotropic Plate Containing an Elliptical Hole from Recorded Temperature Data -- 7.1 Introduction -- 7.2 Experimental Details -- 7.3 Relevant Equations -- 7.4 Finite Element Analysis -- 7.5 Results -- 7.6 Summary, Discussion and Conclusions -- References -- Chapter 8: Using TSA to Identify Regions Having Developed Plastic Strain during Welding -- 8.1 Introduction -- 8.2 Methodology -- 8.3 Results and Discussion -- 8.4 Conclusions and Future Work -- References -- Chapter 9: Finite Element Modelling of a Series of Austenitic Stainless Steel 316L Weldments to Inform Thermoelastic Stress An... -- 9.1 Introduction -- 9.2 Methodology -- 9.3 Illustration Case: Mock-Up A -- 9.4 Results and Discussion -- 9.5 Conclusions and Future Work -- References -- Chapter 10: Residual Stress Measurement of Full-Scale Jet-Engine Bearing Elements Using the Contour Method -- 10.1 Introduction -- 10.1.1 Residual Stresses and Roller Bearings -- 10.1.2 Bearing Residual Stress Measurements with the Contour Method -- 10.2 Purpose -- 10.3 Methods -- 10.3.1 Experimental -- 10.3.2 Particulars of the Cut Plan and Reasoning -- 10.3.3 Finite Element Modeling -- 10.4 Results and Discussion -- 10.4.1 Strains from the Bending Moment Release Cut -- 10.4.2 Results for the Measured Contours -- 10.4.3 Residual Stresses -- 10.5 Conclusions and Future Plans -- References -- Chapter 11: ESPI Hole-Drilling of Rings and Holes Using Cylindrical Hole Analysis -- 11.1 Background -- 11.2 Experimental -- 11.3 Results -- 11.4 Discussion -- 11.5 Conclusions -- References -- Chapter 12: Preliminary Study on Residual Stress in FDM Parts -- 12.1 Introduction -- 12.2 Material and Methods -- 12.3 Results and Discussions -- 12.4 Conclusion -- References