DFT Study of CO2 Adsorption and Hydrogenation on the In2O3 Surface
Catalytic conversion of CO2 to liquid fuels or valuable chemicals is an attractive alternative to geological sequestration. In the present study, we applied density functional theory slab calculations in the investigation of the adsorption and hydrogenation of CO2 on the (110) surface of In2O3. Our...
Saved in:
Published in | Journal of physical chemistry. C Vol. 116; no. 14; pp. 7817 - 7825 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Columbus, OH
American Chemical Society
12.04.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Catalytic conversion of CO2 to liquid fuels or valuable chemicals is an attractive alternative to geological sequestration. In the present study, we applied density functional theory slab calculations in the investigation of the adsorption and hydrogenation of CO2 on the (110) surface of In2O3. Our results indicate that the adsorbed CO2 is activated, forming a surface carbonate species by combining with surface oxygen, and has an adsorption energy of −1.25 eV. Heterolytic dissociative adsorption of H2 results in a surface hydroxyl from H binding the surface O site and a hydride from H binding the In site. The migration of H from the In site to the neighboring O site is energetically favorable but has a significant activation barrier of 1.32 eV. Water may adsorb on the surface either molecularly or dissociatively, with adsorption energy of −0.83 eV and −1.19 eV, respectively. Starting from CO2 coadsorbed with the H adatoms on the In2O3 surface, we examined two possible conversion pathways for CO2: (a) CO2 is hydrogenated by the H adatom on the In site to form a surface formate species (HCOO); (b) CO2 is protonated by the H adatom on the O site to form a surface bicarbonate species (COOH). Reaction a is endothermic by +0.33 eV, whereas b is exothermic by −0.78 eV. Although the formation of the bicarbonate species is energetically favorable, the subsequent step to form CO and OH is highly endothermic, with a reaction energy of +1.07 eV. Furthermore, the bicarbonate species can react with a surface hydroxyl easily, resulting in coadsorbed H2O and CO2. These results indicate that hydrogenation of CO2 to the formate species is favorable over protonation to the bicarbonate species on the In2O3 surface. These results are consistent with the experimental observations that the indium oxide based catalyst has a high CO2 selectivity and H2O resistance. |
---|---|
AbstractList | Catalytic conversion of CO2 to liquid fuels or valuable chemicals is an attractive alternative to geological sequestration. In the present study, we applied density functional theory slab calculations in the investigation of the adsorption and hydrogenation of CO2 on the (110) surface of In2O3. Our results indicate that the adsorbed CO2 is activated, forming a surface carbonate species by combining with surface oxygen, and has an adsorption energy of −1.25 eV. Heterolytic dissociative adsorption of H2 results in a surface hydroxyl from H binding the surface O site and a hydride from H binding the In site. The migration of H from the In site to the neighboring O site is energetically favorable but has a significant activation barrier of 1.32 eV. Water may adsorb on the surface either molecularly or dissociatively, with adsorption energy of −0.83 eV and −1.19 eV, respectively. Starting from CO2 coadsorbed with the H adatoms on the In2O3 surface, we examined two possible conversion pathways for CO2: (a) CO2 is hydrogenated by the H adatom on the In site to form a surface formate species (HCOO); (b) CO2 is protonated by the H adatom on the O site to form a surface bicarbonate species (COOH). Reaction a is endothermic by +0.33 eV, whereas b is exothermic by −0.78 eV. Although the formation of the bicarbonate species is energetically favorable, the subsequent step to form CO and OH is highly endothermic, with a reaction energy of +1.07 eV. Furthermore, the bicarbonate species can react with a surface hydroxyl easily, resulting in coadsorbed H2O and CO2. These results indicate that hydrogenation of CO2 to the formate species is favorable over protonation to the bicarbonate species on the In2O3 surface. These results are consistent with the experimental observations that the indium oxide based catalyst has a high CO2 selectivity and H2O resistance. |
Author | Ge, Qingfeng Ye, Jingyun Liu, Changjun |
AuthorAffiliation | Southern Illinois University Tianjin University |
AuthorAffiliation_xml | – name: Tianjin University – name: Southern Illinois University |
Author_xml | – sequence: 1 givenname: Jingyun surname: Ye fullname: Ye, Jingyun – sequence: 2 givenname: Changjun surname: Liu fullname: Liu, Changjun – sequence: 3 givenname: Qingfeng surname: Ge fullname: Ge, Qingfeng email: qge@chem.siu.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25828464$$DView record in Pascal Francis |
BookMark | eNpFUEtrwzAYM6ODtd0O-we-7JjN9udHcuyydS0UcmjuwbHjLaFzgp0c8u_XPehAICGEEFqhhe99g9A9JY-UMPrUDUAIVwqu0JJmwBLFhVhcNFc3aBVjR4gAQmGJnl-2JT6Ok51x73BeMLyxsQ_D2PYea2_xbrahf2-8_nHOGD8avPesAHycgtOmuUXXTp9ic_fHa1RuX8t8lxyKt32-OSSacjEm1tbCAVG25ozXMpPMOpBGiJpmqZGUaGO5A84spc4pJYXInANLJRhVW1ijh9_aQUejTy5ob9pYDaH91GGumEhZyiX_z2kTq66fgj-Pqiipvv-pLv_AFwVLVxc |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society – notice: 2014 INIST-CNRS |
DBID | IQODW |
DOI | 10.1021/jp3004773 |
DatabaseName | Pascal-Francis |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1932-7455 |
EndPage | 7825 |
ExternalDocumentID | 25828464 c668269361 |
GroupedDBID | .K2 4.4 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 RNS ROL UI2 UKR VF5 VG9 VQA W1F 186 6TJ ABBLG ABJNI ABLBI ABQRX ACRPL ADHLV ADNMO ADXHL AEYZD AFFNX AGQPQ AHGAQ ANPPW ANTXH CUPRZ GGK IQODW UQL ZCG |
ID | FETCH-LOGICAL-a145t-ddb5f307db424b6962df36c55b198c610acd4f342d11ff776559ff3d163c7bd3 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Mon Jul 21 09:16:48 EDT 2025 Thu Aug 27 13:42:09 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Adsorption energy Theoretical study Crystal face Hydrides Binding site Selectivity Crystallographic plane Hydrogenation Indium oxide Adsorption Density functional method Adatoms Formate Carbonates Diffusion Catalyst |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a145t-ddb5f307db424b6962df36c55b198c610acd4f342d11ff776559ff3d163c7bd3 |
PageCount | 9 |
ParticipantIDs | pascalfrancis_primary_25828464 acs_journals_10_1021_jp3004773 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2012-04-12 |
PublicationDateYYYYMMDD | 2012-04-12 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Columbus, OH |
PublicationPlace_xml | – name: Columbus, OH |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
SSID | ssj0053013 |
Score | 2.5311453 |
Snippet | Catalytic conversion of CO2 to liquid fuels or valuable chemicals is an attractive alternative to geological sequestration. In the present study, we applied... |
SourceID | pascalfrancis acs |
SourceType | Index Database Publisher |
StartPage | 7817 |
SubjectTerms | Catalysis Catalysts: preparations and properties Chemistry Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Diffusion; interface formation Electron states Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport phenomena in thin films and low-dimensional structures Exact sciences and technology General and physical chemistry Methods of electronic structure calculations Physics Solid surfaces and solid-solid interfaces Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
Title | DFT Study of CO2 Adsorption and Hydrogenation on the In2O3 Surface |
URI | http://dx.doi.org/10.1021/jp3004773 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELZKGWDhjXhWlmBNSeyL3YwlUBUk6NAidYvsOB5ASqokHcqv55I0UhECJI-2Zd-d7e905-8IuXUTD1jCuWNcBRWptnKUiK1jpHINE9wGNZH2y6sYv8Hz3J93yM0vEXzm3b0vKlIoKfkW2WZiICsPaxhO2-vWRwvlTegYoSKAbOmDNodWT09cVHmPqsCt26ZmxcZDMtonD-13nCZ_5KO_LHU__vzJzvjXGg_I3hpI0mGj-UPSSdIjshO29duOyf3DaEarNMEVzSwNJ4wOTZHl9RVBVWroeGXyDO2n1g3FhliQPqVswul0mVsVJydkNnqchWNnXTHBUR74pWOM9i2eWqOBgRaBYMZyEfu-9oJBjEhJxQYsB2Y8z1opBfoT1nKDoCyW2vBT0k2zNDkjlCMy0VDxxVkXFFh0iwaAg0FyqbkbnJMeSjRaG3wR1bFshr5EKwns8E3Y0aJhz4hYFagDARf_zXBJdhGdMKcmVrwi3TJfJteIAErdqy3gC2jPpxc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwED5BGWDhjXjjAcZAYl9iOjCUQtVCS4cWiS2y43gAKa2aVqj8E_4Kv45L2kBhYaqElDE52fewv9NdvgM4dWMPeSyEY1yFGam2clQQWcdI5RoeCFvOibRbD0H9Ee-e_KcFeC_-haFFpCQpzYv43-wC3sVzP-OGkrIYVH0fj18pPUuvGjdkyzPOa7fdat2ZThBwlIf-0DFG-5a82GjkqINywI0VQeT7mnLtiJCDigxagdx4nrVSBoSvrRWGQEoktREkdhGWCPPwLK-rVDvFIe9TXIhJwZoAKqIsSItmV5pdeFGadVuqlBRuJ5MyZq6v2hp8fG0871p5OR8N9Xn09osT8l9qZh1Wp6CZVSZevgELcbIJy9ViVt0WXN_UuixriRyznmXVNmcVk_YG-XHIVGJYfWwGPYqV3A8ZPYR7WSPhbcE6o4FVUbwN3XnsYAdKSS-Jd4EJQmEaM24866JCSyngJdLHKIXUwi3vwTHpPZwGdxrmdXtOeVOheHrhh4nD_oQpJORZURID3P9Lwgks17utZthsPNwfwAqhMu7khJKHUBoORvERIZ-hPs59kEE4Z8t-AqYrCV8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwED5BkYCFN-KNBxgDiX2J6cBQWqqWt0SR2CI7jgeQ0qpphcp_4a_w2zinDQIWJiSkjMnJvof9ne7yHcCBnwbIUyE84yt0pNrKU1FiPSOVb3gkbLUg0r6-iVoPePEYPk7BW_kvDC0iJ0l5UcR3Ud0zdsIwEBw_9Rw_lJTlsOrLdPRCKVp-2m6QPQ85b5536i1vMkXAUwGGA88YHVryZKORo46qETdWREkYasq3E0IPKjFoBXITBNZKGRHGtlYYAiqJ1EaQ2GmYcdVBl9vV6vflQR9SbIhx0ZpAKqIsiYu-rtRdeknuOi5VTkq342kZX66w5iK8f26-6Fx5PhoO9FHy-oMX8t9qZwkWJuCZ1cbevgxTabYCc_VyZt0qnDWaHeZaI0esa1n9lrOaybv94lhkKjOsNTL9LsVM4Y-MHsK_rJ3xW8Huh32rknQNOn-xg3WoZN0s3QAmCI1pdBx51keFllLBE6SPUQqphV_dhD3SfTwJ8jwu6vec8qdS8fTCNzPHvTFjSMxdcRIj3PpNwj7M3jWa8VX75nIb5gmcca_gldyByqA_THcJAA30XuGGDOI_NuwHzTEL4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT+Study+of+CO2+Adsorption+and+Hydrogenation+on+the+In2O3+Surface&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Ye%2C+Jingyun&rft.au=Liu%2C+Changjun&rft.au=Ge%2C+Qingfeng&rft.date=2012-04-12&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=116&rft.issue=14&rft.spage=7817&rft.epage=7825&rft_id=info:doi/10.1021%2Fjp3004773&rft.externalDocID=c668269361 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |