DFT Study of CO2 Adsorption and Hydrogenation on the In2O3 Surface

Catalytic conversion of CO2 to liquid fuels or valuable chemicals is an attractive alternative to geological sequestration. In the present study, we applied density functional theory slab calculations in the investigation of the adsorption and hydrogenation of CO2 on the (110) surface of In2O3. Our...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 116; no. 14; pp. 7817 - 7825
Main Authors Ye, Jingyun, Liu, Changjun, Ge, Qingfeng
Format Journal Article
LanguageEnglish
Published Columbus, OH American Chemical Society 12.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Catalytic conversion of CO2 to liquid fuels or valuable chemicals is an attractive alternative to geological sequestration. In the present study, we applied density functional theory slab calculations in the investigation of the adsorption and hydrogenation of CO2 on the (110) surface of In2O3. Our results indicate that the adsorbed CO2 is activated, forming a surface carbonate species by combining with surface oxygen, and has an adsorption energy of −1.25 eV. Heterolytic dissociative adsorption of H2 results in a surface hydroxyl from H binding the surface O site and a hydride from H binding the In site. The migration of H from the In site to the neighboring O site is energetically favorable but has a significant activation barrier of 1.32 eV. Water may adsorb on the surface either molecularly or dissociatively, with adsorption energy of −0.83 eV and −1.19 eV, respectively. Starting from CO2 coadsorbed with the H adatoms on the In2O3 surface, we examined two possible conversion pathways for CO2: (a) CO2 is hydrogenated by the H adatom on the In site to form a surface formate species (HCOO); (b) CO2 is protonated by the H adatom on the O site to form a surface bicarbonate species (COOH). Reaction a is endothermic by +0.33 eV, whereas b is exothermic by −0.78 eV. Although the formation of the bicarbonate species is energetically favorable, the subsequent step to form CO and OH is highly endothermic, with a reaction energy of +1.07 eV. Furthermore, the bicarbonate species can react with a surface hydroxyl easily, resulting in coadsorbed H2O and CO2. These results indicate that hydrogenation of CO2 to the formate species is favorable over protonation to the bicarbonate species on the In2O3 surface. These results are consistent with the experimental observations that the indium oxide based catalyst has a high CO2 selectivity and H2O resistance.
AbstractList Catalytic conversion of CO2 to liquid fuels or valuable chemicals is an attractive alternative to geological sequestration. In the present study, we applied density functional theory slab calculations in the investigation of the adsorption and hydrogenation of CO2 on the (110) surface of In2O3. Our results indicate that the adsorbed CO2 is activated, forming a surface carbonate species by combining with surface oxygen, and has an adsorption energy of −1.25 eV. Heterolytic dissociative adsorption of H2 results in a surface hydroxyl from H binding the surface O site and a hydride from H binding the In site. The migration of H from the In site to the neighboring O site is energetically favorable but has a significant activation barrier of 1.32 eV. Water may adsorb on the surface either molecularly or dissociatively, with adsorption energy of −0.83 eV and −1.19 eV, respectively. Starting from CO2 coadsorbed with the H adatoms on the In2O3 surface, we examined two possible conversion pathways for CO2: (a) CO2 is hydrogenated by the H adatom on the In site to form a surface formate species (HCOO); (b) CO2 is protonated by the H adatom on the O site to form a surface bicarbonate species (COOH). Reaction a is endothermic by +0.33 eV, whereas b is exothermic by −0.78 eV. Although the formation of the bicarbonate species is energetically favorable, the subsequent step to form CO and OH is highly endothermic, with a reaction energy of +1.07 eV. Furthermore, the bicarbonate species can react with a surface hydroxyl easily, resulting in coadsorbed H2O and CO2. These results indicate that hydrogenation of CO2 to the formate species is favorable over protonation to the bicarbonate species on the In2O3 surface. These results are consistent with the experimental observations that the indium oxide based catalyst has a high CO2 selectivity and H2O resistance.
Author Ge, Qingfeng
Ye, Jingyun
Liu, Changjun
AuthorAffiliation Southern Illinois University
Tianjin University
AuthorAffiliation_xml – name: Tianjin University
– name: Southern Illinois University
Author_xml – sequence: 1
  givenname: Jingyun
  surname: Ye
  fullname: Ye, Jingyun
– sequence: 2
  givenname: Changjun
  surname: Liu
  fullname: Liu, Changjun
– sequence: 3
  givenname: Qingfeng
  surname: Ge
  fullname: Ge, Qingfeng
  email: qge@chem.siu.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25828464$$DView record in Pascal Francis
BookMark eNpFUEtrwzAYM6ODtd0O-we-7JjN9udHcuyydS0UcmjuwbHjLaFzgp0c8u_XPehAICGEEFqhhe99g9A9JY-UMPrUDUAIVwqu0JJmwBLFhVhcNFc3aBVjR4gAQmGJnl-2JT6Ok51x73BeMLyxsQ_D2PYea2_xbrahf2-8_nHOGD8avPesAHycgtOmuUXXTp9ic_fHa1RuX8t8lxyKt32-OSSacjEm1tbCAVG25ozXMpPMOpBGiJpmqZGUaGO5A84spc4pJYXInANLJRhVW1ijh9_aQUejTy5ob9pYDaH91GGumEhZyiX_z2kTq66fgj-Pqiipvv-pLv_AFwVLVxc
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2014 INIST-CNRS
DBID IQODW
DOI 10.1021/jp3004773
DatabaseName Pascal-Francis
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1932-7455
EndPage 7825
ExternalDocumentID 25828464
c668269361
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
186
6TJ
ABBLG
ABJNI
ABLBI
ABQRX
ACRPL
ADHLV
ADNMO
ADXHL
AEYZD
AFFNX
AGQPQ
AHGAQ
ANPPW
ANTXH
CUPRZ
GGK
IQODW
UQL
ZCG
ID FETCH-LOGICAL-a145t-ddb5f307db424b6962df36c55b198c610acd4f342d11ff776559ff3d163c7bd3
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Mon Jul 21 09:16:48 EDT 2025
Thu Aug 27 13:42:09 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Adsorption energy
Theoretical study
Crystal face
Hydrides
Binding site
Selectivity
Crystallographic plane
Hydrogenation
Indium oxide
Adsorption
Density functional method
Adatoms
Formate
Carbonates
Diffusion
Catalyst
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a145t-ddb5f307db424b6962df36c55b198c610acd4f342d11ff776559ff3d163c7bd3
PageCount 9
ParticipantIDs pascalfrancis_primary_25828464
acs_journals_10_1021_jp3004773
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2012-04-12
PublicationDateYYYYMMDD 2012-04-12
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-12
  day: 12
PublicationDecade 2010
PublicationPlace Columbus, OH
PublicationPlace_xml – name: Columbus, OH
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0053013
Score 2.5311453
Snippet Catalytic conversion of CO2 to liquid fuels or valuable chemicals is an attractive alternative to geological sequestration. In the present study, we applied...
SourceID pascalfrancis
acs
SourceType Index Database
Publisher
StartPage 7817
SubjectTerms Catalysis
Catalysts: preparations and properties
Chemistry
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Diffusion; interface formation
Electron states
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport phenomena in thin films and low-dimensional structures
Exact sciences and technology
General and physical chemistry
Methods of electronic structure calculations
Physics
Solid surfaces and solid-solid interfaces
Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Title DFT Study of CO2 Adsorption and Hydrogenation on the In2O3 Surface
URI http://dx.doi.org/10.1021/jp3004773
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELZKGWDhjXhWlmBNSeyL3YwlUBUk6NAidYvsOB5ASqokHcqv55I0UhECJI-2Zd-d7e905-8IuXUTD1jCuWNcBRWptnKUiK1jpHINE9wGNZH2y6sYv8Hz3J93yM0vEXzm3b0vKlIoKfkW2WZiICsPaxhO2-vWRwvlTegYoSKAbOmDNodWT09cVHmPqsCt26ZmxcZDMtonD-13nCZ_5KO_LHU__vzJzvjXGg_I3hpI0mGj-UPSSdIjshO29duOyf3DaEarNMEVzSwNJ4wOTZHl9RVBVWroeGXyDO2n1g3FhliQPqVswul0mVsVJydkNnqchWNnXTHBUR74pWOM9i2eWqOBgRaBYMZyEfu-9oJBjEhJxQYsB2Y8z1opBfoT1nKDoCyW2vBT0k2zNDkjlCMy0VDxxVkXFFh0iwaAg0FyqbkbnJMeSjRaG3wR1bFshr5EKwns8E3Y0aJhz4hYFagDARf_zXBJdhGdMKcmVrwi3TJfJteIAErdqy3gC2jPpxc
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwED5BGWDhjXjjAcZAYl9iOjCUQtVCS4cWiS2y43gAKa2aVqj8E_4Kv45L2kBhYaqElDE52fewv9NdvgM4dWMPeSyEY1yFGam2clQQWcdI5RoeCFvOibRbD0H9Ee-e_KcFeC_-haFFpCQpzYv43-wC3sVzP-OGkrIYVH0fj18pPUuvGjdkyzPOa7fdat2ZThBwlIf-0DFG-5a82GjkqINywI0VQeT7mnLtiJCDigxagdx4nrVSBoSvrRWGQEoktREkdhGWCPPwLK-rVDvFIe9TXIhJwZoAKqIsSItmV5pdeFGadVuqlBRuJ5MyZq6v2hp8fG0871p5OR8N9Xn09osT8l9qZh1Wp6CZVSZevgELcbIJy9ViVt0WXN_UuixriRyznmXVNmcVk_YG-XHIVGJYfWwGPYqV3A8ZPYR7WSPhbcE6o4FVUbwN3XnsYAdKSS-Jd4EJQmEaM24866JCSyngJdLHKIXUwi3vwTHpPZwGdxrmdXtOeVOheHrhh4nD_oQpJORZURID3P9Lwgks17utZthsPNwfwAqhMu7khJKHUBoORvERIZ-hPs59kEE4Z8t-AqYrCV8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwED5BkYCFN-KNBxgDiX2J6cBQWqqWt0SR2CI7jgeQ0qpphcp_4a_w2zinDQIWJiSkjMnJvof9ne7yHcCBnwbIUyE84yt0pNrKU1FiPSOVb3gkbLUg0r6-iVoPePEYPk7BW_kvDC0iJ0l5UcR3Ud0zdsIwEBw_9Rw_lJTlsOrLdPRCKVp-2m6QPQ85b5536i1vMkXAUwGGA88YHVryZKORo46qETdWREkYasq3E0IPKjFoBXITBNZKGRHGtlYYAiqJ1EaQ2GmYcdVBl9vV6vflQR9SbIhx0ZpAKqIsiYu-rtRdeknuOi5VTkq342kZX66w5iK8f26-6Fx5PhoO9FHy-oMX8t9qZwkWJuCZ1cbevgxTabYCc_VyZt0qnDWaHeZaI0esa1n9lrOaybv94lhkKjOsNTL9LsVM4Y-MHsK_rJ3xW8Huh32rknQNOn-xg3WoZN0s3QAmCI1pdBx51keFllLBE6SPUQqphV_dhD3SfTwJ8jwu6vec8qdS8fTCNzPHvTFjSMxdcRIj3PpNwj7M3jWa8VX75nIb5gmcca_gldyByqA_THcJAA30XuGGDOI_NuwHzTEL4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT+Study+of+CO2+Adsorption+and+Hydrogenation+on+the+In2O3+Surface&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Ye%2C+Jingyun&rft.au=Liu%2C+Changjun&rft.au=Ge%2C+Qingfeng&rft.date=2012-04-12&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=116&rft.issue=14&rft.spage=7817&rft.epage=7825&rft_id=info:doi/10.1021%2Fjp3004773&rft.externalDocID=c668269361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon