Computational methods for deep learning : theoretic, practice and applications

Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from g...

Full description

Saved in:
Bibliographic Details
Main Author Yan, Wei Qi
Format eBook Book
LanguageEnglish
Published Cham Springer 2021
Springer International Publishing AG
Springer International Publishing
Edition1
SeriesTexts in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • Intro -- Preface -- Acknowledgements -- Contents -- About the Author -- Symbols and Acronyms -- 1 Introduction -- 1.1 Introduction -- 1.2 Deep Learning -- 1.3 The Chronicle of Deep Learning -- 1.4 Our Deep Learning Projects -- 1.5 Awarded Work in Deep Learning -- 1.6 Questions -- 2 Deep Learning Platforms -- 2.1 Introduction -- 2.2 MATLAB for Deep Learning -- 2.3 TensorFlow for Deep Learning -- 2.4 Data Augmentation -- 2.5 Fundamental Mathematics -- 2.6 Questions -- 3 CNN and RNN -- 3.1 CNN and YOLO -- 3.1.1 R-CNN -- 3.1.2 Mask R-CNN -- 3.1.3 YOLO -- 3.1.4 SSD -- 3.1.5 DenseNets and ResNets -- 3.2 RNN and Time Series Analysis -- 3.3 HMM -- 3.3.1 RNN: Recurrent Neural Networks -- 3.3.2 Time Series Analysis -- 3.4 Functional Spaces -- 3.4.1 Metric Space -- 3.5 Vector Space -- 3.5.1 Normed Space -- 3.5.2 Hilbert Space -- 3.6 Questions -- 4 Autoencoder and GAN -- 4.1 Autoencoder -- 4.2 Regularizations and Autoencoders -- 4.3 Generative Adversarial Networks -- 4.4 Information Theory -- 4.5 Questions -- 5 Reinforcement Learning -- 5.1 Introduction -- 5.2 Bellman Equation -- 5.3 Deep Q-Learning -- 5.4 Optimization -- 5.5 Data Fitting -- 5.6 Questions -- 6 CapsNet and Manifold Learning -- 6.1 CapsNet -- 6.2 Manifold Learning -- 6.3 Questions -- 7 Boltzmann Machines -- 7.1 Boltzmann Machine -- 7.2 Restricted Boltzmann Machine -- 7.3 Deep Boltzmann Machine -- 7.4 Probabilistic Graphical Models -- 7.5 Questions -- 8 Transfer Learning and Ensemble Learning -- 8.1 Transfer Learning -- 8.1.1 Transfer Learning -- 8.1.2 Taskonomy -- 8.2 Siamese Neural Networks -- 8.3 Ensemble Learning -- 8.4 Important Work in Deep Learning -- 8.5 Awarded Work in Deep Learning -- 8.6 Questions -- Glossary -- Index