Nanomaterials in Diagnostic Tools and Devices
Nanomaterials in Diagnostic Tools and Devices provides a complete overview of the significance of nanomaterials in fabricating selective and performance enhanced nanodevices. It is an interdisciplinary reference that includes contributing subjects from nanomaterials, biosensors, materials science, b...
Saved in:
Main Authors | , |
---|---|
Format | eBook |
Language | English |
Published |
Chantilly
Elsevier
2020
|
Edition | 1 |
Subjects | |
Online Access | Get full text |
ISBN | 0128179236 9780128179239 |
DOI | 10.1016/B978-0-12-817923-9.00020-1 |
Cover
Table of Contents:
- Front Cover -- Nanomaterials in Diagnostic Tools and Devices -- Copyright Page -- Contents -- List of contributors -- 1 Recent approaches to the synthesis of smart nanomaterials for nanodevices in disease diagnosis -- 1.1 Introduction -- 1.2 Criteria for nanodevices used in disease diagnosis -- 1.2.1 Analytical performance -- 1.2.1.1 Real-sample preparation -- 1.2.1.2 Multianalyte detection -- 1.2.1.3 Lifetime stability -- 1.2.1.4 Reusability -- 1.2.2 Other requirements and challenges -- 1.2.2.1 Noninvasive/minim-invasive approaches -- 1.2.2.2 Biocompatibility, toxicity, and sterility -- 1.2.2.3 Ethical considerations -- 1.3 Synthesis of smart nanomaterials -- 1.3.1 Nanoparticles -- 1.3.1.1 Metal nanoparticles -- 1.3.1.2 Magnetic nanoparticles -- 1.3.1.3 Polymeric nanoparticles -- 1.3.2 Carbon-based nanomaterials -- 1.3.2.1 Carbon nanotubes -- 1.3.2.2 Graphene and graphene-based nanomaterials -- 1.3.2.3 Other carbon-based nanomaterials -- 1.3.2.4 Functionalization of carbon nanomaterials for diagnosis applications -- 1.3.3 Polymer nanosized and nanostructured films -- 1.3.4 Three-dimensional nanomaterials -- 1.4 Conclusions -- Acknowledgments -- References -- 2 Nanomaterials in biomedical diagnosis -- 2.1 Introduction -- 2.2 Classification -- 2.2.1 Dimensions -- 2.2.2 Pore size -- 2.2.3 Composition -- 2.2.4 Types of nanomaterials -- 2.2.4.1 Clusters -- 2.2.4.2 Nanotubes -- 2.2.4.3 Nanowires -- 2.2.4.4 Nanofibers -- 2.2.4.5 Nanogels -- 2.2.4.6 Nanoshells -- 2.2.4.7 Quantum dots -- 2.2.4.8 Fullerenes -- 2.2.4.9 Metal-based nanomaterials -- 2.3 Approaches to nanomaterial production -- 2.3.1 Top-down approach -- 2.3.2 Bottom-up approach -- 2.4 Nanomaterial method of synthesis -- 2.4.1 Physical method -- 2.4.1.1 Inert gas condensation -- 2.4.1.2 Plasma arc discharge -- 2.4.1.3 Thermal plasma jets -- 2.4.1.4 Ion sputtering -- 2.4.1.5 Laser ablation
- 3.11.3 Multimodal imaging -- 3.11.4 Magnetic resonance imaging -- 3.12 Therapeutics delivery vehicle -- 3.12.1 Cargo attachment -- 3.12.2 Cell targeting -- 3.12.3 Cargo delivery -- 3.13 Antibiotic drugs -- 3.14 Red blood cell -- 3.15 Neurodegenerative disease -- 3.16 Pulmonary disease -- 3.17 Mammalian cells -- 3.18 Photothermal therapy -- 3.19 Conclusions -- Acknowledgments -- References -- 4 Metal oxide-based nanosensors for healthcare and environmental applications -- 4.1 Introduction -- 4.2 Background -- 4.2.1 Operating principles of gas sensor elements -- 4.2.2 Metal oxide-based sensing materials -- 4.2.2.1 Aluminum oxide-based sensors -- 4.2.2.2 Bismuth oxide-based sensors -- 4.2.2.3 Cerium oxide-based sensors -- 4.2.2.4 Niobium oxide-based sensors -- 4.2.2.5 Chromium oxide-based sensors -- 4.2.2.6 Cobalt oxide-based sensors -- 4.2.2.7 Copper oxide-based sensors -- 4.2.2.8 Gallium oxide-bases sensors -- 4.2.2.9 Indium oxide-based sensors -- 4.2.2.10 Iron oxide-based sensors -- 4.2.2.11 Manganese oxide-based sensors -- 4.2.2.12 Molybdenum oxide-based sensors -- 4.2.2.13 Tin oxide-based sensors -- 4.2.2.14 Tungsten oxide-based sensors -- 4.2.2.15 Titanium oxide-based sensors -- 4.2.2.16 Zirconium oxide-based sensors -- 4.2.2.17 Zinc oxide-based sensors -- 4.2.3 Nanostructured hybrids of metal oxides -- 4.2.4 Physical approaches for the synthesis of nanostructured metal oxides -- 4.2.4.1 Gas phase condensation -- 4.2.4.2 Mechanical alloying -- 4.2.4.3 Thermal crystallization -- 4.2.4.4 Molecular beam epitaxy -- 4.2.5 Chemical approaches for the synthesis of nanostructured metal oxides -- 4.2.5.1 Sol-gel technique -- 4.2.5.2 Hydrothermal process -- 4.2.5.3 Chemical precipitation -- 4.2.5.4 Reverse microemulsion -- 4.2.5.5 Solid-state metathesis -- 4.3 Conclusion -- References
- 6.2.2.7 Microphone -- 6.3 Smartphone-based colorimetric devices -- 6.3.1 Colorimetric detection using solutions of analytes -- 6.3.1.1 Experimental setup -- 6.3.1.2 Sample preparation and study -- 6.3.2 Colorimetric detection using paper strips -- 6.4 Smartphone-based fluorescent devices -- 6.5 Smartphone-based electrochemical sensors -- 6.5.1 Amperometric smartphone sensor -- 6.5.2 Potentiometric smartphone sensor -- 6.5.3 Impedimetric smartphone sensor -- 6.6 Smartphone-based luminescent sensor -- 6.7 Smartphone-based imaging sensors -- 6.7.1 Bright-field microscopic imaging devices -- 6.7.1.1 In-lens strategy -- 6.7.1.2 Lens-free strategy -- 6.7.2 Fluorescent microscopic imaging devices -- 6.8 Advantages and disadvantages of smartphone-based nanodevices -- Author declaration -- References -- 7 SERS methods based on nanomaterials as a diagnostic tool of cancer -- 7.1 Noble materials -- 7.2 Nonmetal materials -- Acknowledgments -- References -- 8 Recent progress in mucoadhesive polymers for buccal drug delivery applications -- 8.1 Introduction -- 8.2 Oral mucosa -- 8.2.1 Permeability of oral mucosa -- 8.3 Basis of designing bioadhesive buccal delivery systems -- 8.3.1 Drug substance -- 8.3.2 Mucoadhesive materials -- 8.3.2.1 Theories of mucoadhesion -- 8.3.2.2 Factors affecting mucoadhesion -- 8.3.2.3 Miscellaneous factor -- 8.3.2.4 Stages of the mucoadhesive process -- 8.3.2.5 Classification of mucoadhesive polymers -- 8.3.2.5.1 First-generation mucoadhesives -- Cationic polymers -- Anionic polymers -- 8.3.2.5.2 Second-generation mucoadhesives -- Lectins -- Bacterial invasions -- Amino acid sequence -- Thiolated polymers -- Backing membrane -- Permeation enhancer -- Mechanism of permeation enhancer -- Enzyme inhibitors -- Solubility enhancers -- Preservatives -- Flavoring, sweetening, and coloring agents -- 8.4 Buccal drug delivery devices
- 5 Recent advances in polymeric and solid lipid-based nanoparticles for controlled drug delivery -- 5.1 Introduction -- 5.1.1 Advantages of solid lipid nanoparticles -- 5.1.2 Disadvantages of solid lipid nanoparticles -- 5.2 Basic components of solid lipid nanoparticles -- 5.2.1 Lipids -- 5.2.2 Surfactants -- 5.3 Approaches used in preparation of solid lipid nanoparticles -- 5.3.1 High-pressure homogenization -- 5.3.1.1 Hot homogenization -- 5.3.1.2 Cold homogenization -- 5.3.2 Ultrasonication -- 5.3.3 Microemulsion-based solid lipid nanoparticles preparations -- 5.3.4 Microemulsion cooling -- 5.3.5 Supercritical fluid -- 5.3.5.1 Rapid expansion supercritical solutions process -- 5.3.5.2 Gas antisolvent -- 5.3.5.3 Particles from gas-saturated suspensions/solutions process -- 5.3.5.4 Supercritical fluid extraction emulsions process -- 5.3.6 Solvent emulsification diffusion/evaporation -- 5.3.7 Double emulsion solvent evaporation -- 5.3.8 Coacervation -- 5.3.9 Phase inversion temperature -- 5.3.10 Membrane contractor -- 5.3.11 Cryogenic micronization -- 5.3.12 Electrospray -- 5.4 Drug release from solid lipid nanoparticles -- 5.5 Storage conditions -- 5.6 Characterization of solid lipid nanoparticles -- 5.6.1 Particle size estimation -- 5.6.2 Surface charge -- 5.6.3 Morphology -- 5.6.4 Yield and entrapment efficiency -- 5.6.5 In vitro release -- 5.6.6 Measurement of crystallinity and lipid modifications -- 5.7 Applications -- 5.8 Conclusions -- References -- 6 Smartphone-based nanodevices for in-field diagnosis -- 6.1 Introduction -- 6.2 Smartphone features and capabilities -- 6.2.1 What is a sensor? -- 6.2.2 Classification of sensors -- 6.2.2.1 Accelerometer, gyroscope, and pedometer sensors -- 6.2.2.2 Proximity sensor -- 6.2.2.3 Barometer sensor -- 6.2.2.4 Light sensor -- 6.2.2.5 Thermometer/temperature sensor -- 6.2.2.6 Fingerprint sensor
- 8.4.1 Solid dosage form
- 2.4.1.6 Laser pyrolysis -- 2.4.1.7 Ball milling -- 2.4.1.8 Chemical vapor deposition -- 2.4.2 Biological/green methods -- 2.4.3 Chemical methods -- 2.4.3.1 Hydrothermal synthesis -- 2.4.3.2 Solvothermal synthesis -- 2.4.3.3 Cryochemical synthesis -- 2.4.3.4 Aerosol-based process -- 2.5 Characterization of nanomaterials -- 2.5.1 Chemical characterization -- 2.5.1.1 UV visible spectroscopy -- 2.5.1.2 Photoluminescence spectroscopy -- 2.5.1.3 Fourier transform infrared spectroscopy -- 2.5.1.4 Energy dispersive X-ray spectroscopy -- 2.5.1.5 Brunauer-Emmett-Teller surface area analysis method -- 2.5.1.6 Nuclear magnetic resonance spectroscopy -- 2.5.2 Structural characterization -- 2.5.2.1 X-ray diffraction technique -- 2.5.2.2 Electron microscopy -- 2.5.2.2.1 Scanning electron microscopy -- 2.5.2.2.2 Transmission electron microscopy -- 2.5.2.3 Static light scattering -- 2.5.2.4 Particle size analyzer -- 2.5.2.5 Atomic force microscopy -- 2.5.2.6 Thermo-gravimetric/differential thermal analyzer -- 2.5.2.7 Magnetic force microscopy -- 2.6 Applications -- 2.6.1 Hepatitis -- 2.6.2 HIV disease -- 2.6.3 Malaria -- 2.6.4 Tuberculosis -- 2.6.5 Filarial parasite -- 2.6.6 Cancer -- 2.7 Future prospects -- 2.8 Conclusions -- References -- 3 Functional graphene-based nanodevices: emerging diagnostic tool -- 3.1 Introduction -- 3.2 Pristine graphene -- 3.3 Graphene oxide -- 3.4 Reduced graphene oxide -- 3.5 Graphene toxicity and biocompatibility -- 3.6 Functionalization with nanostructures -- 3.7 Nanodevices -- 3.8 Noncommunicable diseases -- 3.8.1 Myocardial infarction detection -- 3.8.2 DNA detection -- 3.8.3 Biomolecules detection -- 3.9 Drug delivery -- 3.10 Stem cells -- 3.10.1 Neural stem cells -- 3.10.2 Mesenchymal stem cells -- 3.10.3 Pluripotent stem cells -- 3.11 Optical imaging -- 3.11.1 Photoacoustic imaging -- 3.11.2 Raman imaging