Nanomaterials in Diagnostic Tools and Devices

Nanomaterials in Diagnostic Tools and Devices provides a complete overview of the significance of nanomaterials in fabricating selective and performance enhanced nanodevices. It is an interdisciplinary reference that includes contributing subjects from nanomaterials, biosensors, materials science, b...

Full description

Saved in:
Bibliographic Details
Main Authors Kanchi, Suvardhan, Sharma, D
Format eBook
LanguageEnglish
Published Chantilly Elsevier 2020
Edition1
Subjects
Online AccessGet full text
ISBN0128179236
9780128179239
DOI10.1016/B978-0-12-817923-9.00020-1

Cover

Abstract Nanomaterials in Diagnostic Tools and Devices provides a complete overview of the significance of nanomaterials in fabricating selective and performance enhanced nanodevices. It is an interdisciplinary reference that includes contributing subjects from nanomaterials, biosensors, materials science, biomedical instrumentation and medicinal chemistry. This book is authored by experts in the field of nanomaterial synthesis, modeling, and biosensor applications, and provides insight to readers working in various science fields on the latest advancements in smart and miniaturized nanodevices. These devices enable convenient real-time diagnosis of diseases at clinics rather than laboratories, and include implantable devices that cause less irritation and have improved functionality. Research in the field of nanomaterials is growing rapidly, creating a significant impact across different science disciplines and nanotechnology industries. This synthesis and modeling of nanomaterials has led to many technology breakthroughs and applications, especially in medical science.
AbstractList Nanomaterials in Diagnostic Tools and Devices provides a complete overview of the significance of nanomaterials in fabricating selective and performance enhanced nanodevices. It is an interdisciplinary reference that includes contributing subjects from nanomaterials, biosensors, materials science, biomedical instrumentation and medicinal chemistry. This book is authored by experts in the field of nanomaterial synthesis, modeling, and biosensor applications, and provides insight to readers working in various science fields on the latest advancements in smart and miniaturized nanodevices. These devices enable convenient real-time diagnosis of diseases at clinics rather than laboratories, and include implantable devices that cause less irritation and have improved functionality. Research in the field of nanomaterials is growing rapidly, creating a significant impact across different science disciplines and nanotechnology industries. This synthesis and modeling of nanomaterials has led to many technology breakthroughs and applications, especially in medical science.
Author Kanchi, Suvardhan
Sharma, D
Author_xml – sequence: 1
  fullname: Kanchi, Suvardhan
– sequence: 2
  fullname: Sharma, D
BookMark eNpVj0tPwzAQhI14CFr6HyIuiIPLru0k9pGm5SFVcKm4Ro5jQ2iwoQ7l72O1cOC02plvVzMjcuSDt4RcIEwRsLieqVJSoMioxFIxTtUUAFhSDsgkeYBsZ4jikIz-Fl6ckBFiLhlDCeUpmcT4ls540oCJM0IftQ_verCbTvcx63w27_SLD3HoTLYKIWnat9ncbjtj4zk5dgmzk985Js-3i1V1T5dPdw_VzZJqFELkVDjhgBthpchtyxW0zgpuEA3IIgdXtoVzHI3VpeKsUQ4Yy00rMUedkjV8TK72j3Vc2-_4Gvoh1tveNiGsY_2vbWIv9-zHJnx-2TjUO8xYP2x0Xy9mVZHaM6n4Dw6QWlo
ContentType eBook
DEWEY 620.5
DOI 10.1016/B978-0-12-817923-9.00020-1
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9780128179246
0128179244
Edition 1
ExternalDocumentID 9780128179246
EBC6221289
GroupedDBID 38.
AAAAS
AABBV
AAKJW
AAKZG
AANYM
AAWMN
AAXUO
AAZNM
ABGWT
ABLXK
ABQQC
ACDGK
ACKCA
ADCEY
AEIUV
AEYWH
AHCEL
AIJLT
ALMA_UNASSIGNED_HOLDINGS
APVFW
AUWGE
BBABE
CZZ
HGY
SDK
AAYWO
ALBLE
ID FETCH-LOGICAL-a14445-4f4f03c4e845ed390dfe43c11c08650f7d6ff31cea7932b9f0225cd8151a115b3
ISBN 0128179236
9780128179239
IngestDate Fri Apr 25 18:34:09 EDT 2025
Fri May 30 22:25:14 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident TA418.9.N35$b.N366 2020
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a14445-4f4f03c4e845ed390dfe43c11c08650f7d6ff31cea7932b9f0225cd8151a115b3
OCLC 1158221807
PQID EBC6221289
PageCount 626
ParticipantIDs askewsholts_vlebooks_9780128179246
proquest_ebookcentral_EBC6221289
PublicationCentury 2000
PublicationDate 2020
2020-06-01
PublicationDateYYYYMMDD 2020-01-01
2020-06-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Chantilly
PublicationPlace_xml – name: Chantilly
PublicationYear 2020
Publisher Elsevier
Publisher_xml – name: Elsevier
SSID ssj0003115024
Score 2.1909664
Snippet Nanomaterials in Diagnostic Tools and Devices provides a complete overview of the significance of nanomaterials in fabricating selective and performance...
SourceID askewsholts
proquest
SourceType Aggregation Database
Publisher
SubjectTerms Nanostructured materials
TableOfContents Front Cover -- Nanomaterials in Diagnostic Tools and Devices -- Copyright Page -- Contents -- List of contributors -- 1 Recent approaches to the synthesis of smart nanomaterials for nanodevices in disease diagnosis -- 1.1 Introduction -- 1.2 Criteria for nanodevices used in disease diagnosis -- 1.2.1 Analytical performance -- 1.2.1.1 Real-sample preparation -- 1.2.1.2 Multianalyte detection -- 1.2.1.3 Lifetime stability -- 1.2.1.4 Reusability -- 1.2.2 Other requirements and challenges -- 1.2.2.1 Noninvasive/minim-invasive approaches -- 1.2.2.2 Biocompatibility, toxicity, and sterility -- 1.2.2.3 Ethical considerations -- 1.3 Synthesis of smart nanomaterials -- 1.3.1 Nanoparticles -- 1.3.1.1 Metal nanoparticles -- 1.3.1.2 Magnetic nanoparticles -- 1.3.1.3 Polymeric nanoparticles -- 1.3.2 Carbon-based nanomaterials -- 1.3.2.1 Carbon nanotubes -- 1.3.2.2 Graphene and graphene-based nanomaterials -- 1.3.2.3 Other carbon-based nanomaterials -- 1.3.2.4 Functionalization of carbon nanomaterials for diagnosis applications -- 1.3.3 Polymer nanosized and nanostructured films -- 1.3.4 Three-dimensional nanomaterials -- 1.4 Conclusions -- Acknowledgments -- References -- 2 Nanomaterials in biomedical diagnosis -- 2.1 Introduction -- 2.2 Classification -- 2.2.1 Dimensions -- 2.2.2 Pore size -- 2.2.3 Composition -- 2.2.4 Types of nanomaterials -- 2.2.4.1 Clusters -- 2.2.4.2 Nanotubes -- 2.2.4.3 Nanowires -- 2.2.4.4 Nanofibers -- 2.2.4.5 Nanogels -- 2.2.4.6 Nanoshells -- 2.2.4.7 Quantum dots -- 2.2.4.8 Fullerenes -- 2.2.4.9 Metal-based nanomaterials -- 2.3 Approaches to nanomaterial production -- 2.3.1 Top-down approach -- 2.3.2 Bottom-up approach -- 2.4 Nanomaterial method of synthesis -- 2.4.1 Physical method -- 2.4.1.1 Inert gas condensation -- 2.4.1.2 Plasma arc discharge -- 2.4.1.3 Thermal plasma jets -- 2.4.1.4 Ion sputtering -- 2.4.1.5 Laser ablation
3.11.3 Multimodal imaging -- 3.11.4 Magnetic resonance imaging -- 3.12 Therapeutics delivery vehicle -- 3.12.1 Cargo attachment -- 3.12.2 Cell targeting -- 3.12.3 Cargo delivery -- 3.13 Antibiotic drugs -- 3.14 Red blood cell -- 3.15 Neurodegenerative disease -- 3.16 Pulmonary disease -- 3.17 Mammalian cells -- 3.18 Photothermal therapy -- 3.19 Conclusions -- Acknowledgments -- References -- 4 Metal oxide-based nanosensors for healthcare and environmental applications -- 4.1 Introduction -- 4.2 Background -- 4.2.1 Operating principles of gas sensor elements -- 4.2.2 Metal oxide-based sensing materials -- 4.2.2.1 Aluminum oxide-based sensors -- 4.2.2.2 Bismuth oxide-based sensors -- 4.2.2.3 Cerium oxide-based sensors -- 4.2.2.4 Niobium oxide-based sensors -- 4.2.2.5 Chromium oxide-based sensors -- 4.2.2.6 Cobalt oxide-based sensors -- 4.2.2.7 Copper oxide-based sensors -- 4.2.2.8 Gallium oxide-bases sensors -- 4.2.2.9 Indium oxide-based sensors -- 4.2.2.10 Iron oxide-based sensors -- 4.2.2.11 Manganese oxide-based sensors -- 4.2.2.12 Molybdenum oxide-based sensors -- 4.2.2.13 Tin oxide-based sensors -- 4.2.2.14 Tungsten oxide-based sensors -- 4.2.2.15 Titanium oxide-based sensors -- 4.2.2.16 Zirconium oxide-based sensors -- 4.2.2.17 Zinc oxide-based sensors -- 4.2.3 Nanostructured hybrids of metal oxides -- 4.2.4 Physical approaches for the synthesis of nanostructured metal oxides -- 4.2.4.1 Gas phase condensation -- 4.2.4.2 Mechanical alloying -- 4.2.4.3 Thermal crystallization -- 4.2.4.4 Molecular beam epitaxy -- 4.2.5 Chemical approaches for the synthesis of nanostructured metal oxides -- 4.2.5.1 Sol-gel technique -- 4.2.5.2 Hydrothermal process -- 4.2.5.3 Chemical precipitation -- 4.2.5.4 Reverse microemulsion -- 4.2.5.5 Solid-state metathesis -- 4.3 Conclusion -- References
6.2.2.7 Microphone -- 6.3 Smartphone-based colorimetric devices -- 6.3.1 Colorimetric detection using solutions of analytes -- 6.3.1.1 Experimental setup -- 6.3.1.2 Sample preparation and study -- 6.3.2 Colorimetric detection using paper strips -- 6.4 Smartphone-based fluorescent devices -- 6.5 Smartphone-based electrochemical sensors -- 6.5.1 Amperometric smartphone sensor -- 6.5.2 Potentiometric smartphone sensor -- 6.5.3 Impedimetric smartphone sensor -- 6.6 Smartphone-based luminescent sensor -- 6.7 Smartphone-based imaging sensors -- 6.7.1 Bright-field microscopic imaging devices -- 6.7.1.1 In-lens strategy -- 6.7.1.2 Lens-free strategy -- 6.7.2 Fluorescent microscopic imaging devices -- 6.8 Advantages and disadvantages of smartphone-based nanodevices -- Author declaration -- References -- 7 SERS methods based on nanomaterials as a diagnostic tool of cancer -- 7.1 Noble materials -- 7.2 Nonmetal materials -- Acknowledgments -- References -- 8 Recent progress in mucoadhesive polymers for buccal drug delivery applications -- 8.1 Introduction -- 8.2 Oral mucosa -- 8.2.1 Permeability of oral mucosa -- 8.3 Basis of designing bioadhesive buccal delivery systems -- 8.3.1 Drug substance -- 8.3.2 Mucoadhesive materials -- 8.3.2.1 Theories of mucoadhesion -- 8.3.2.2 Factors affecting mucoadhesion -- 8.3.2.3 Miscellaneous factor -- 8.3.2.4 Stages of the mucoadhesive process -- 8.3.2.5 Classification of mucoadhesive polymers -- 8.3.2.5.1 First-generation mucoadhesives -- Cationic polymers -- Anionic polymers -- 8.3.2.5.2 Second-generation mucoadhesives -- Lectins -- Bacterial invasions -- Amino acid sequence -- Thiolated polymers -- Backing membrane -- Permeation enhancer -- Mechanism of permeation enhancer -- Enzyme inhibitors -- Solubility enhancers -- Preservatives -- Flavoring, sweetening, and coloring agents -- 8.4 Buccal drug delivery devices
5 Recent advances in polymeric and solid lipid-based nanoparticles for controlled drug delivery -- 5.1 Introduction -- 5.1.1 Advantages of solid lipid nanoparticles -- 5.1.2 Disadvantages of solid lipid nanoparticles -- 5.2 Basic components of solid lipid nanoparticles -- 5.2.1 Lipids -- 5.2.2 Surfactants -- 5.3 Approaches used in preparation of solid lipid nanoparticles -- 5.3.1 High-pressure homogenization -- 5.3.1.1 Hot homogenization -- 5.3.1.2 Cold homogenization -- 5.3.2 Ultrasonication -- 5.3.3 Microemulsion-based solid lipid nanoparticles preparations -- 5.3.4 Microemulsion cooling -- 5.3.5 Supercritical fluid -- 5.3.5.1 Rapid expansion supercritical solutions process -- 5.3.5.2 Gas antisolvent -- 5.3.5.3 Particles from gas-saturated suspensions/solutions process -- 5.3.5.4 Supercritical fluid extraction emulsions process -- 5.3.6 Solvent emulsification diffusion/evaporation -- 5.3.7 Double emulsion solvent evaporation -- 5.3.8 Coacervation -- 5.3.9 Phase inversion temperature -- 5.3.10 Membrane contractor -- 5.3.11 Cryogenic micronization -- 5.3.12 Electrospray -- 5.4 Drug release from solid lipid nanoparticles -- 5.5 Storage conditions -- 5.6 Characterization of solid lipid nanoparticles -- 5.6.1 Particle size estimation -- 5.6.2 Surface charge -- 5.6.3 Morphology -- 5.6.4 Yield and entrapment efficiency -- 5.6.5 In vitro release -- 5.6.6 Measurement of crystallinity and lipid modifications -- 5.7 Applications -- 5.8 Conclusions -- References -- 6 Smartphone-based nanodevices for in-field diagnosis -- 6.1 Introduction -- 6.2 Smartphone features and capabilities -- 6.2.1 What is a sensor? -- 6.2.2 Classification of sensors -- 6.2.2.1 Accelerometer, gyroscope, and pedometer sensors -- 6.2.2.2 Proximity sensor -- 6.2.2.3 Barometer sensor -- 6.2.2.4 Light sensor -- 6.2.2.5 Thermometer/temperature sensor -- 6.2.2.6 Fingerprint sensor
8.4.1 Solid dosage form
2.4.1.6 Laser pyrolysis -- 2.4.1.7 Ball milling -- 2.4.1.8 Chemical vapor deposition -- 2.4.2 Biological/green methods -- 2.4.3 Chemical methods -- 2.4.3.1 Hydrothermal synthesis -- 2.4.3.2 Solvothermal synthesis -- 2.4.3.3 Cryochemical synthesis -- 2.4.3.4 Aerosol-based process -- 2.5 Characterization of nanomaterials -- 2.5.1 Chemical characterization -- 2.5.1.1 UV visible spectroscopy -- 2.5.1.2 Photoluminescence spectroscopy -- 2.5.1.3 Fourier transform infrared spectroscopy -- 2.5.1.4 Energy dispersive X-ray spectroscopy -- 2.5.1.5 Brunauer-Emmett-Teller surface area analysis method -- 2.5.1.6 Nuclear magnetic resonance spectroscopy -- 2.5.2 Structural characterization -- 2.5.2.1 X-ray diffraction technique -- 2.5.2.2 Electron microscopy -- 2.5.2.2.1 Scanning electron microscopy -- 2.5.2.2.2 Transmission electron microscopy -- 2.5.2.3 Static light scattering -- 2.5.2.4 Particle size analyzer -- 2.5.2.5 Atomic force microscopy -- 2.5.2.6 Thermo-gravimetric/differential thermal analyzer -- 2.5.2.7 Magnetic force microscopy -- 2.6 Applications -- 2.6.1 Hepatitis -- 2.6.2 HIV disease -- 2.6.3 Malaria -- 2.6.4 Tuberculosis -- 2.6.5 Filarial parasite -- 2.6.6 Cancer -- 2.7 Future prospects -- 2.8 Conclusions -- References -- 3 Functional graphene-based nanodevices: emerging diagnostic tool -- 3.1 Introduction -- 3.2 Pristine graphene -- 3.3 Graphene oxide -- 3.4 Reduced graphene oxide -- 3.5 Graphene toxicity and biocompatibility -- 3.6 Functionalization with nanostructures -- 3.7 Nanodevices -- 3.8 Noncommunicable diseases -- 3.8.1 Myocardial infarction detection -- 3.8.2 DNA detection -- 3.8.3 Biomolecules detection -- 3.9 Drug delivery -- 3.10 Stem cells -- 3.10.1 Neural stem cells -- 3.10.2 Mesenchymal stem cells -- 3.10.3 Pluripotent stem cells -- 3.11 Optical imaging -- 3.11.1 Photoacoustic imaging -- 3.11.2 Raman imaging
Title Nanomaterials in Diagnostic Tools and Devices
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6221289
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780128179246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LT8MgGCe6XdzJZ5yvNMZrlRb64Lo5XUz04jTz1FAK0bi0ia0e_Ov9oK9tzhi9kJYSSPmR7wHf9wOhMxxwJamvbMo9blMlYpsR5tgiIMILE6ao1MnJt3f--IHeTL1pe7egyS4p4nPxuTKv5D-oQh3gqrNk_4Bs0ylUwDPgCyUgDOWS8du8VtmyPM3A1CzH0FsWl2XEnGZfnWTZLK8ijI0YaGQqAGyu8AVpoe8Dem4Xxr0hsG4DgKttABcvbQPU-SkL7qE5JgvAw_JXCsvSbx-UHLsOCEbdltiawFMP4LQqogncGw2GvgvaLmTrqAv9ulqQjK-fmm0tTd4Dat-QF5WDE7_iOarfWc396vgXPw_eQz2ev4KgByVQ5N80pVH_k03UlTonZAutyXQb9eY4HHeQvYCF9ZJaLRaWwcICLKwKi130eDWaDMd2dQeFzcHVpB4sX6owEVSG1JMJYTiBtU2E4whwBj2sgsRXijhCcpB0bswUGEWacAEsKQ5zEZM91EmzVO4jy1Oxj0NQKJgTKjGLacIdlzPmBpIIFvbR6dwvRx8zc16eRwtI9pFVz0RkvldBvFELzcHvTQ7RRruIjlCneHuXx2BdFfGJwfMLWjka9g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Nanomaterials+in+Diagnostic+Tools+and+Devices&rft.au=Kanchi%2C+Suvardhan&rft.au=Sharma%2C+D&rft.date=2020-01-01&rft.pub=Elsevier&rft.isbn=9780128179246&rft_id=info:doi/10.1016%2FB978-0-12-817923-9.00020-1&rft.externalDocID=EBC6221289
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97801281%2F9780128179246.jpg