Hydrogen Bond Interpenetrated Agarose/PVA Network: A Highly Ionic Conductive and Flame-Retardant Gel Polymer Electrolyte

The gel polymer electrolyte (GPE) is the key to assembling high-performance solid-state supercapacitors (SSCs). The commercial poly­(vinyl alcohol) (PVA) GPE has developed a reputation due to low ionic conductivity endowed by its high crystallinity and poor water retention capacity. In this work, de...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 13; no. 8; pp. 9856 - 9864
Main Authors Yan, Tingting, Zou, Yihui, Zhang, Xiaohui, Li, Daohao, Guo, Xiangxin, Yang, Dongjiang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The gel polymer electrolyte (GPE) is the key to assembling high-performance solid-state supercapacitors (SSCs). The commercial poly­(vinyl alcohol) (PVA) GPE has developed a reputation due to low ionic conductivity endowed by its high crystallinity and poor water retention capacity. In this work, density functional theory (DFT) calculations first revealed that the high crystallinity of PVA can be greatly disrupted by forming hydrogen bonds with natural agarose macromolecules. The hydrogen bond interpenetrated three-dimensional agarose/PVA network offers high water retention and large amounts of channels for movement of Li+ on hydroxyl oxygen atoms. So, an optimized formation of the Li–O coordinate bond (g Li–O(r) = 8.78) and improved diffusion coefficient of Li+ (D Li+ ) (71 × 10–6 cm2 s–1) were obtained in the agarose/PVA model. When assembled into SSCs, agarose/PVA-GPE with 2 M LiOAc (AP-GPE) exhibits an outstanding specific capacitance (697.22 mF cm–2 at 5 mA cm–2). The high water retention of agarose and large amounts of −OH groups in the agarose macromolecular can generate H2O by dehydration reaction, reducing the flammability of PVA and greatly enhancing the safety of SSCs.
AbstractList The gel polymer electrolyte (GPE) is the key to assembling high-performance solid-state supercapacitors (SSCs). The commercial poly­(vinyl alcohol) (PVA) GPE has developed a reputation due to low ionic conductivity endowed by its high crystallinity and poor water retention capacity. In this work, density functional theory (DFT) calculations first revealed that the high crystallinity of PVA can be greatly disrupted by forming hydrogen bonds with natural agarose macromolecules. The hydrogen bond interpenetrated three-dimensional agarose/PVA network offers high water retention and large amounts of channels for movement of Li+ on hydroxyl oxygen atoms. So, an optimized formation of the Li–O coordinate bond (g Li–O(r) = 8.78) and improved diffusion coefficient of Li+ (D Li+ ) (71 × 10–6 cm2 s–1) were obtained in the agarose/PVA model. When assembled into SSCs, agarose/PVA-GPE with 2 M LiOAc (AP-GPE) exhibits an outstanding specific capacitance (697.22 mF cm–2 at 5 mA cm–2). The high water retention of agarose and large amounts of −OH groups in the agarose macromolecular can generate H2O by dehydration reaction, reducing the flammability of PVA and greatly enhancing the safety of SSCs.
The gel polymer electrolyte (GPE) is the key to assembling high-performance solid-state supercapacitors (SSCs). The commercial poly(vinyl alcohol) (PVA) GPE has developed a reputation due to low ionic conductivity endowed by its high crystallinity and poor water retention capacity. In this work, density functional theory (DFT) calculations first revealed that the high crystallinity of PVA can be greatly disrupted by forming hydrogen bonds with natural agarose macromolecules. The hydrogen bond interpenetrated three-dimensional agarose/PVA network offers high water retention and large amounts of channels for movement of Li on hydroxyl oxygen atoms. So, an optimized formation of the Li-O coordinate bond ( (r) = 8.78) and improved diffusion coefficient of Li ( ) (71 × 10 cm s ) were obtained in the agarose/PVA model. When assembled into SSCs, agarose/PVA-GPE with 2 M LiOAc (AP-GPE) exhibits an outstanding specific capacitance (697.22 mF cm at 5 mA cm ). The high water retention of agarose and large amounts of -OH groups in the agarose macromolecular can generate H O by dehydration reaction, reducing the flammability of PVA and greatly enhancing the safety of SSCs.
Author Yan, Tingting
Guo, Xiangxin
Li, Daohao
Zou, Yihui
Zhang, Xiaohui
Yang, Dongjiang
AuthorAffiliation Shandong Qingdao University
Queensland Micro-and Nanotechnology Centre (QMNC)
Griffith University
College of Materials Science and Engineering, School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles
AuthorAffiliation_xml – name: College of Materials Science and Engineering, School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles
– name: Shandong Qingdao University
– name: Griffith University
– name: Queensland Micro-and Nanotechnology Centre (QMNC)
Author_xml – sequence: 1
  givenname: Tingting
  surname: Yan
  fullname: Yan, Tingting
  organization: Shandong Qingdao University
– sequence: 2
  givenname: Yihui
  surname: Zou
  fullname: Zou, Yihui
  organization: Shandong Qingdao University
– sequence: 3
  givenname: Xiaohui
  surname: Zhang
  fullname: Zhang, Xiaohui
  organization: Shandong Qingdao University
– sequence: 4
  givenname: Daohao
  surname: Li
  fullname: Li, Daohao
  organization: Shandong Qingdao University
– sequence: 5
  givenname: Xiangxin
  surname: Guo
  fullname: Guo, Xiangxin
  organization: Shandong Qingdao University
– sequence: 6
  givenname: Dongjiang
  orcidid: 0000-0002-9365-3726
  surname: Yang
  fullname: Yang, Dongjiang
  email: d.yang@qdu.edu.cn
  organization: Griffith University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33595270$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtPwzAMhyM0xB5w5YhyRuqWR7MwbmPaS5pgQsC18hJ3dLTplGZA_3uKNjjZlj7_ZH9d0nKlQ0KuOetzJvgATAVF1mdGMM3EGenwURxHd0KJ1n8fx23SraodY0MpmLogbSnVSAnNOuR7UVtfbtHRh9JZunQB_R4dBg8BLR1vwZcVDtZvY_qI4av0H_d0TBfZ9j2v6bJ0maGTZvFgQvaJFJqIWQ4FRs8YwFtwgc4xp-syrwv0dJqjCb4ZAl6S8xTyCq9OtUdeZ9OXySJaPc2Xk_EqAh7LEIFkdgPcbLhsfkKOQyOVFFxIBSqGYZymxmjUGpXglqca0RoNDQFcCyZkj9wcc_eHTYE22fusAF8nfwoa4PYINCqTXXnwrjkn4Sz59Zsc_SYnv_IHzSNu_A
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID NPM
DOI 10.1021/acsami.0c20702
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 9864
ExternalDocumentID 33595270
b008886965
Genre Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
5ZA
6J9
AAHBH
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
ID FETCH-LOGICAL-a143t-a30dba1cb13252e1e6c35321235a54a64ffcc7e77e521d1f7eedc7a321a172023
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Sat Sep 28 08:25:12 EDT 2024
Fri Mar 05 09:54:09 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords flame retardant
supercapacitors
agarose
gel polymer electrolyte
hydrogen bond
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a143t-a30dba1cb13252e1e6c35321235a54a64ffcc7e77e521d1f7eedc7a321a172023
ORCID 0000-0002-9365-3726
PMID 33595270
PageCount 9
ParticipantIDs pubmed_primary_33595270
acs_journals_10_1021_acsami_0c20702
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20210303
2021-Mar-03
PublicationDateYYYYMMDD 2021-03-03
PublicationDate_xml – month: 03
  year: 2021
  text: 20210303
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0063205
Score 2.5832028
Snippet The gel polymer electrolyte (GPE) is the key to assembling high-performance solid-state supercapacitors (SSCs). The commercial poly­(vinyl alcohol) (PVA) GPE...
The gel polymer electrolyte (GPE) is the key to assembling high-performance solid-state supercapacitors (SSCs). The commercial poly(vinyl alcohol) (PVA) GPE...
SourceID pubmed
acs
SourceType Index Database
Publisher
StartPage 9856
SubjectTerms Energy, Environmental, and Catalysis Applications
Title Hydrogen Bond Interpenetrated Agarose/PVA Network: A Highly Ionic Conductive and Flame-Retardant Gel Polymer Electrolyte
URI http://dx.doi.org/10.1021/acsami.0c20702
https://www.ncbi.nlm.nih.gov/pubmed/33595270
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN6YetGD70d9ZRO90sLCAvVGmtZqYtOoNb2RfQwexNYUmoi_3lnAaNqD3pkN2f2Yb5b99htCrjqhVEi7icW18CxPKG1JBQ5iWXPJOqFQytxGvh_6g7F3N-GTn_8dyyf4zGkLlZlWOLZiiE5MtuvMyAdNEdR9_M65vstKsSLuyD0rRMb6tmdciTckpLKlGrLkkv52ZWyUlRaERkLy2lrksqU-Vw0a_3zNHbJVF5Q0qhCwS9Zgukc2f9kM7pOPQaHnM0QKNU2EaaUzxBxXGtNqGr0IpEpoj54jOqxU4dc0okYBkhb01njn0i4GLsrUSAUO0UccgfUAOeILl4beQEpHs7R4gzntVY110iKHAzLu9566A6vuuGAJrJtyS7i2lsJREveonIEDvnK5a9iNC-4J30sSpQIIAkDW104SIMOqQOATAgshpP9D0pjOpnBMaMIhBF_iBpRLz4aO8ANtuwmWdzgU-F6TXOKUxfUXk8XlYThz4moe43oem-SoWqj4vTLfiF1zk5gF9sm_4k_JBjMiFCMac89II58v4ByriFxelAD6Aok0wrY
link.rule.ids 315,786,790,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4QPKgH3w98bqLXQl_bgjdCQFAgRMFwa_Yx9WAFQ0ti_fXOtqAGL3ptupvN9ut832RnvyHkulYVEmk3NJjiruFyqQwhwUIsKybsWpVLqW8j9_pee-Tejdm4QCrLuzC4iBhnirND_G93AauCz3RHHFPaCFKMuWvMx2Rca6HG4zL0eo6d1SxiYu4aVSSupUvjr_Gai2S8IiUzSmltk8HXYrJKkpfyPBFl-bHi0_iP1e6QrYW8pPUcD7ukAJM9svnDdHCfvLdTNZsibqhuKUzzqkOMeJlNraL1Z47ECZXBU5328xrxG1qnuh4kSmlHO-nSBg6cZ4GScpyihagC4wESRBt-KHoLER1Mo_QVZrSZt9mJ0gQOyKjVHDbaxqL_gsFRRSUGd0wluCUFZqzMBgs86TBHcx3jzOWeG4ZS-uD7gBpAWaGPfCt9jm9wlEUoBg5JcTKdwDGhIYMqeALTUSZcE2rc85XphCj2cCrw3BK5wi0LFv9PHGRH47YV5PsYLPaxRI7y7xW85VYcgaPvFdu-efKn8ZdkvT3sdYNup39_SjZsXZ6iy8mcM1JMZnM4R32RiIsMU5_do8sh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YTIwefD_wuYleC31tW7w1CIIPQhQMt2YfUw9WIFAS8dc72xZj8KLXprvZzH4782125htCrmqBkBh2Y4Mp7houl8oQEizEsmLCrgVcSl2N_NjxWn33bsAGRR23roXBRUxxpmn2iK9P9VjFhcKAVcXvuiuOKW0EKvrdVaa7d2s-VH9euF_PsbO8Rbycu0aAwWuh1PhrvI5HcrpEJ7Ow0twive8FZdkkb5VZKiryc0mr8Z8r3iabBc2kYY6LHbICw12y8UN8cI98tOZqMkL8UN1amObZh-j5MrlaRcNXjgEUqt2XkHbyXPFrGlKdF5LMaVsr6tI6DpxlDpNynKKJ6ALjCVJEHW4YvYWEdkfJ_B0mtJG320nmKeyTfrPRq7eMog-DwdG8qcEdUwluSYE3V2aDBZ50mKNjHuPM5Z4bx1L64PuAXEBZsY9xV_oc_-BIj5AUHJDScDSEI0JjBgF4Aq-lTLgm1LjnK9OJkfThVOC5ZXKJJouKczSNsidy24pyO0aFHcvkMN-zaJxLckSOri-2ffP4T-MvyFr3phk9tDv3J2Td1lkqOqvMOSWldDKDM6QZqTjPYPUFh7HNmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Bond+Interpenetrated+Agarose%2FPVA+Network%3A+A+Highly+Ionic+Conductive+and+Flame-Retardant+Gel+Polymer+Electrolyte&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Yan%2C+Tingting&rft.au=Zou%2C+Yihui&rft.au=Zhang%2C+Xiaohui&rft.au=Li%2C+Daohao&rft.date=2021-03-03&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=13&rft.issue=8&rft.spage=9856&rft.epage=9864&rft_id=info:doi/10.1021%2Facsami.0c20702&rft.externalDocID=b008886965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon