ECML PKDD 2018 Workshops DMLE 2018 and IoTStream 2018, Dublin, Ireland, September 10-14, 2018, Revised Selected Papers
This book constitutes revised selected papers from the workshops DMLE and IoTStream, held at the 18thEuropean Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, in Dublin, Ireland, in September 2018. The 8 full papers presented in this volume were carefully reviewed...
Saved in:
Main Authors | , , , , , , , , |
---|---|
Format | eBook |
Language | English |
Published |
Netherlands
Springer Nature
2019
Springer International Publishing AG Springer |
Edition | 1 |
Series | Communications in Computer and Information Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783030148805 3030148807 9783030148799 3030148793 |
Cover
Loading…
Abstract | This book constitutes revised selected papers from the workshops DMLE and IoTStream, held at the 18thEuropean Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, in Dublin, Ireland, in September 2018. The 8 full papers presented in this volume were carefully reviewed and selected from a total of 12 submissions.The workshops included are:DMLE 2018: First Workshop on Decentralized Machine Learning at the EdgeIoTStream 2018: 3rd Workshop on IoT Large Scale Machine Learning from Data Streams |
---|---|
AbstractList | This book constitutes revised selected papers from the workshops DMLE and IoTStream, held at the 18thEuropean Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, in Dublin, Ireland, in September 2018. The 8 full papers presented in this volume were carefully reviewed and selected from a total of 12 submissions.The workshops included are:DMLE 2018: First Workshop on Decentralized Machine Learning at the EdgeIoTStream 2018: 3rd Workshop on IoT Large Scale Machine Learning from Data Streams |
Author | Krishnamurthy, Yamuna Paurat, Daniel Ribeiro, Rita P Kamp, Michael Sayed-Mouchaweh, Moamar Bifet, Albert Gama, João Alzate, Carlos Monreale, Anna |
Author_xml | – sequence: 1 fullname: Monreale, Anna – sequence: 2 fullname: Alzate, Carlos – sequence: 3 fullname: Kamp, Michael – sequence: 4 fullname: Krishnamurthy, Yamuna – sequence: 5 fullname: Paurat, Daniel – sequence: 6 fullname: Sayed-Mouchaweh, Moamar – sequence: 7 fullname: Bifet, Albert – sequence: 8 fullname: Gama, João – sequence: 9 fullname: Ribeiro, Rita P |
BookMark | eNpdzztPwzAUBWAjHoKW7IwRC2KodP2Kr0dIw0MEwYBgjGzXoSUhDnGAv0-hLDBdHenTOboTstOFzm-RRCvkwIEKRJDb__IemVBArZgGrfdJEuMLADDKpaTZATkq8tsyvb-Zz1MGFNOnMDRxGfp4SHZr00af_N4pebwoHvKrWXl3eZ2flTNDBSg5q02mNEdjra3Zwgntam-5tV4gpajAaOSCukXmUchMoLNOeKdr8Khr9MCn5HRTbGLjP9fb7Rirj9bbEJpY_fllbU82th_C27uPY_XDnO_GwbRVcZ5LzZSW3_J4I52Jpl11q-o1dOF5MP0yVlJKpgTjXw-wV1k |
ContentType | eBook |
DBID | I4C |
DEWEY | 006 |
DatabaseName | Casalini Torrossa eBooks Institutional Catalogue |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030148805 3030148807 |
Edition | 1 1st ed. 2019. |
Editor | Alzate, Carlos Monreale, Anna Krishnamurthy, Yamuna Kamp, Michael |
Editor_xml | – sequence: 1 fullname: Alzate, Carlos – sequence: 2 fullname: Kamp, Michael – sequence: 3 fullname: Krishnamurthy, Yamuna – sequence: 4 fullname: Monreale, Anna |
ExternalDocumentID | 9783030148805 EBC5927955 5552742 |
GroupedDBID | 0D6 0DA 38. 9-X AABBV AEJLV AEKFX AEZAY AIFIR ALMA_UNASSIGNED_HOLDINGS AYMPB BBABE CXBFT CZZ EXGDT FCSXQ I4C IEZ MGZZY NSQWD OORQV SBO SNUHX TPJZQ Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 |
ID | FETCH-LOGICAL-a14075-fa67938abbbf2dc49cfeb3bbe4811870a98341cd6e845648cbc4ec9f0e89f8e03 |
ISBN | 9783030148805 3030148807 9783030148799 3030148793 |
IngestDate | Fri Nov 08 03:46:09 EST 2024 Tue Oct 29 01:26:28 EDT 2024 Wed Apr 23 04:17:08 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCallNum_Ident | Q |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a14075-fa67938abbbf2dc49cfeb3bbe4811870a98341cd6e845648cbc4ec9f0e89f8e03 |
OCLC | 1089729099 |
PQID | EBC5927955 |
PageCount | 133 |
ParticipantIDs | askewsholts_vlebooks_9783030148805 proquest_ebookcentral_EBC5927955 casalini_monographs_5552742 |
PublicationCentury | 2000 |
PublicationDate | 2019 2019-03-07 |
PublicationDateYYYYMMDD | 2019-01-01 2019-03-07 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Cham |
PublicationSeriesTitle | Communications in Computer and Information Science |
PublicationYear | 2019 |
Publisher | Springer Nature Springer International Publishing AG Springer |
Publisher_xml | – name: Springer Nature – name: Springer International Publishing AG – name: Springer |
SSID | ssj0002135516 |
Score | 2.1012866 |
Snippet | This book constitutes revised selected papers from the workshops DMLE and IoTStream, held at the 18thEuropean Conference on Machine Learning and Knowledge... |
SourceID | askewsholts proquest casalini |
SourceType | Aggregation Database Publisher |
SubjectTerms | Data mining Special computer methods |
Subtitle | DMLE 2018 and IoTStream 2018, Dublin, Ireland, September 10-14, 2018, Revised Selected Papers |
TableOfContents | Intro -- Workshop Editors -- Preface -- Contents -- Decentralized Machine Learning on the Edge -- Preface -- Decentralized Machine Learning on the Edge -- Organization -- DMLE'18 Chairs -- Program Committee -- Sparsity in Deep Neural Networks - An Empirical Investigation with TensorQuant -- 1 Introduction -- 1.1 Related Work -- 1.2 Contribution -- 2 Methods -- 2.1 Sparsity -- 2.2 Enforcing Sparsity -- 2.3 TensorQuant -- 3 Experiments -- 3.1 Sparsity of Activations and Weights -- 3.2 Sparsity of Gradients During Training -- 4 Conclusion -- References -- Asynchronous Federated Learning for Geospatial Applications -- 1 Introduction -- 2 Results -- 3 Discussion and Outlook -- References -- Generalizing Knowledge in Decentralized Rule-Based Models -- 1 Introduction -- 2 Related Work -- 3 Generalization of Rule-Based Models -- 3.1 Train and Evaluate Base Models -- 3.2 Create Groups of Base Models -- 3.3 Generalize Base Models -- 3.4 Evaluate Generalized Models -- 4 Conclusions -- References -- Introducing Noise in Decentralized Training of Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Noisy Averaging -- 3.1 Basic Concepts -- 3.2 Periodic Averaging Protocol with Noise Injection -- 4 Empirical Evaluation -- 4.1 Linear Neural Networks -- 4.2 Non-linear Neural Networks -- 5 Conclusion -- References -- 3rd Workshop on IoT Large Scale Machine Learning from Data Streams -- Preface -- Workshop Description -- Organization -- Workshop Chairs -- Program Committee Members -- Keynote Speaker -- Program Committee -- Query Log Analysis: Detecting Anomalies in DNS Traffic at a TLD Resolver -- 1 Introduction -- 2 Related Work -- 3 Detecting Anomalies in DNS Server Logs -- 3.1 Challenges -- 3.2 QLAD-flow -- 3.3 QLAD-global -- 4 QLAD Architecture -- 5 Empirical Evaluation -- 5.1 Q1: Data Preprocessing and Storage -- 5.2 Q2: Anomaly Detection Performance 5 Prognostic Metrics -- 6 Conclusion -- References -- Author Index 5.3 Q3: Classification of Detected Anomalies -- 6 Conclusions -- References -- Multimodal Tweet Sentiment Classification Algorithm Based on Attention Mechanism -- Abstract -- 1 Introduction -- 2 Related Work -- 3 The Proposed Model -- 3.1 Text Feature Extractor -- 3.2 Image Feature Extractor -- 3.3 Attention Base Fusion of Text and Image Feature -- 4 Experiment -- 4.1 Datasets -- 4.2 Result and Analysis -- 5 Conclusion -- References -- Active Learning by Clustering for Drifted Data Stream Classification -- 1 Introduction -- 1.1 Classification -- 1.2 Data Streams -- 1.3 Concept Drift -- 1.4 Labeling -- 2 Related Works -- 3 Method -- 4 Experiments -- 4.1 Objective -- 4.2 Benchmark Data Streams -- 4.3 Algorithm Parameter Setup -- 4.4 Results -- 4.5 Analysis -- 4.6 Lessons Learnt -- 5 Conclusions -- References -- Self Hyper-parameter Tuning for Stream Recommendation Algorithms -- 1 Introduction -- 2 Related Work -- 3 Self Parameter Tuning -- 3.1 Nelder-Mead Optimisation -- 3.2 Adaptive Sample Size -- 4 Experimental Evaluation -- 4.1 Data Sets -- 4.2 Evaluation Metrics and Protocol -- 4.3 Significance Tests -- 4.4 Experiments -- 5 Conclusions -- References -- Deep Online Storage-Free Learning on Unordered Image Streams -- 1 Introduction -- 2 Proposed Method -- 2.1 Replacing Original Data by Generators -- 2.2 Batch Classification on Generated Data -- 2.3 Online Learning on Data Streams -- 3 Experimental Results -- 3.1 Datasets and Data Preparation -- 3.2 Online Classification -- 4 Conclusions -- References -- Fault Prognostics for the Predictive Maintenance of Wind Turbines: State of the Art -- 1 Introduction -- 2 Health Indicator Construction -- 2.1 Health Indicator Evaluation -- 3 Degradation Detection Based on Health Stage Division -- 4 Fault Prognostic (RUL Estimation) -- 4.1 Experience Based Prognostic -- 4.2 Degradation Modelling Based Approaches |
Title | ECML PKDD 2018 Workshops |
URI | http://digital.casalini.it/9783030148805 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5927955 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783030148805 |
Volume | 967 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage2EvvEVZQBbi1galtZ043KAtWi0tQqKsllNkJ46Q6CNqsrvS_npmbCfZFg7AJXVGrqN4vthje74ZQt4IwXgexyaAXxPwEZQUiwx8eAomoCwfFRzZyIvP0ek3fnYhLjoKgWWX1PptdvNHXsn_aBVkoFdkyf6DZttGQQBl0C9cQcNwPTB-21u_hz5ZzAdfPk2nA5hZpc33Uv3Ylta9bbqYz5zYuvpul3jwrNZWZEcY3HhyfC8ksriN5a-mrA3mBhmgGwVHUVMfTw8qMEsrmzEHCqUqTXcGBIPCzninZIzG3CJodaNc6r2J2q223ZmRWpeH_vooxkz3G7W-3NVO79-h7FvDvjTVPpelcnRFl5LCOzW3RMxmxLq9pYEsKha43Ld7W5p7S11mF38ydumUmrE7cbk8DkJmd9Ulhre9G8eyR47ez87m5-3-23jE8IwQ6T5Ny8wFZOqedEyOVfUTJhuYiOoKLRdVKSSs_jZxW2tk-YAcGaSoPCR3zOYRud_0AvVv_ZhcIz4o4oOiFmmLj3cU0eGE0Ge0RYcVDanDxpB6ZAxpiwtqcTH09TwmaIMJ6jDxhJx_nC0np4HPsBEoWFjHIihUBO8tlda6GOcZT7LCaKa14RLz0IcqkWDmZHlkJMYdkpnOuMmSIjQyKaQJ2VPS22w35hmhOs5Clo-isQ4NFybSuVJSRLnAoJI8Y33y-lZnplcr6w1QpXvK6pOTpo9T-Fhd1PYqFRgnkI_7hDbdntp_ewfmdPZhIpJxnAjx_G-eckLudbB7QXr17tK8BNuy1q88TH4Bvh9yjQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=ECML+PKDD+2018+workshops%3A+DMLE+2018+and+IoTStream+2018%2C+Dublin%2C+Ireland%2C+September+10-14%2C+2018%2C+Revised+selected+papers&rft.au=Monreale%2C+Anna&rft.au=Alzate%2C+Carlos&rft.au=Kamp%2C+Michael&rft.au=Krishnamurthy%2C+Yamuna&rft.series=Communications+in+Computer+and+Information+Science&rft.date=2019-03-07&rft.pub=Springer&rft.isbn=9783030148799&rft.volume=967&rft.externalDocID=9783030148805 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830301%2F9783030148805.jpg |