Machine Learning and Knowledge Discovery in Databases European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part I

Saved in:
Bibliographic Details
Main Authors Ceci, Michelangelo, Hollmén, Jaakko, Todorovski, Ljupčo, Vens, Celine, Dzeroski, Saso
Format eBook
LanguageEnglish
Published Cham Springer International Publishing AG 2017
Edition1
Subjects
Online AccessGet full text

Cover

Loading…
Author Vens, Celine
Hollmén, Jaakko
Dzeroski, Saso
Todorovski, Ljupčo
Ceci, Michelangelo
Author_xml – sequence: 1
  fullname: Ceci, Michelangelo
– sequence: 2
  fullname: Hollmén, Jaakko
– sequence: 3
  fullname: Todorovski, Ljupčo
– sequence: 4
  fullname: Vens, Celine
– sequence: 5
  fullname: Dzeroski, Saso
BookMark eNqNjstKxEAQRVt8oBnzD9m5ClSl30vNjKMYcSNuh-6kMkZDt6aj4t87ou5dXS4cDidjByEG2mO51YZztBorYe0-y_6OsUcsQ0AjdIXKHLM8pScAQMsBNZwweevaxyFQ0ZCbwhC2hQtdcRPix0jdlorlkNr4TtNnMYRi6WbnXaJ0yg57NybKf3fBHi5X9_VV2dytr-vzpnQoQEBpea868lIgamqF8qD8LkUoRb00FsgLVe3SiVvXYddW34T0xkt0DrniC3b2I36Z4usbpXlDPsbnlsI8uXGzuqgVB17Bf0gptQYw_Au9xVXw
ContentType eBook
DEWEY 006.31
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783319712499
3319712497
Edition 1
ExternalDocumentID EBC6303206
EBC5577008
GroupedDBID 0D6
0DA
38.
AABBV
AALVI
ABBVZ
ABHTH
ABQUB
ACDJR
AEDXK
AEJLV
AEKFX
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BATQV
BBABE
CVWCR
CZZ
I4C
IEZ
SBO
SWYDZ
TPJZQ
TSXQS
Z5O
Z7R
Z7U
Z7W
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-a14040-93f6deb54117ec46b06b847466ef5890eb462783e39ad1dc26b065b8b51aa1363
ISBN 3319712489
9783319712482
IngestDate Fri May 30 22:02:47 EDT 2025
Fri May 30 23:59:13 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident QA76.9.D343Q334-342T
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a14040-93f6deb54117ec46b06b847466ef5890eb462783e39ad1dc26b065b8b51aa1363
OCLC 1018472168
PQID EBC5577008
PageCount 898
ParticipantIDs proquest_ebookcentral_EBC6303206
proquest_ebookcentral_EBC5577008
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationYear 2017
Publisher Springer International Publishing AG
Publisher_xml – name: Springer International Publishing AG
SSID ssj0001930170
Score 2.0013433
SourceID proquest
SourceType Publisher
SubjectTerms Machine learning-Congresses
Subtitle European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part I
TableOfContents Intro -- Preface -- Organization -- Invited Talks Abstracts -- Towards End-to-End Learning and Optimization -- Frontiers in Recurrent Neural Network Research -- Using Networks to Link Genotype to Phenotype -- Multi-target Prediction via Low-Rank Embeddings -- Enabling a Smarter Planet with Earth Observation -- Automatic Understanding of the Visual World -- Abstracts of Journal Track Articles -- Contents - Part I -- Contents - Part II -- Contents - Part III -- Anomaly Detection -- Concentration Free Outlier Detection -- 1 Introduction -- 2 The Concentration Free Outlier Factor -- 2.1 Definition -- 2.2 Relationship with the Distance Concentration Phenomenon -- 2.3 Relationship with the Hubness Phenomenon -- 2.4 Concentration Free Property of CFOF -- 3 Score Computation -- 3.1 The fast-CFOF Technique -- 4 Experimental Results -- 4.1 Accuracy -- 4.2 Scalability -- 4.3 Effectiveness -- 4.4 Comparison with Other Approaches -- 5 Conclusions -- References -- Efficient Top Rank Optimization with Gradient Boosting for Supervised Anomaly Detection -- 1 Introduction -- 2 Evaluation Criteria and Related Work -- 3 Stochastic Gradient Boosting with AP -- 3.1 Stochastic Gradient Boosting -- 3.2 Sigmoid-Based Surrogate of AP -- 3.3 Exponential-Based Surrogate of AP -- 3.4 Comparison Between the Approximations of AP -- 4 Experiments -- 4.1 Top-Rank Quality over Unbalanced Datasets -- 4.2 Top Rank Capability for a Decreasing Positive Ratio -- 5 Conclusion and Perspectives -- References -- Robust, Deep and Inductive Anomaly Detection -- 1 Anomaly Detection: Motivation and Challenges -- 2 Background and Related Work on Anomaly Detection -- 2.1 A Tour of Anomaly Detection Methods -- 2.2 PCA for Anomaly Detection -- 2.3 Autoencoders for Anomaly Detection -- 2.4 Robust PCA -- 2.5 Direct Robust Matrix Factorization -- 2.6 Robust Kernel PCA
Computer Vision -- Alternative Semantic Representations for Zero-Shot Human Action Recognition -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Text-Based Semantic Representation -- 3.2 Image-Based Semantic Representation -- 4 Experimental Settings -- 4.1 Dataset -- 4.2 Zero-Shot Recognition Method -- 4.3 Video Representation -- 4.4 Evaluation -- 5 Experimental Results -- 5.1 Text-Based Representation -- 5.2 Image-Based Representation -- 5.3 Comparison with Other Semantic Representations -- 5.4 How Many Images Are Enough? -- 6 Conclusions and Future Work -- References -- Early Active Learning with Pairwise Constraint for Person Re-identification -- 1 Introduction -- 2 The Proposed Framework -- 2.1 Early Active Learning -- 2.2 Early Active Learning with Pairwise Constraint -- 3 Optimization -- 4 Convergence Analysis -- 5 Experimental Study -- 5.1 Datasets and Settings -- 5.2 Experimental Result Analysis -- 6 Conclusion -- References -- Guiding InfoGAN with Semi-supervision -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Preliminaries: GAN and InfoGAN -- 3.2 Semi-supervised InfoGAN -- 4 Implementation -- 5 Experiments -- 5.1 MNIST -- 5.2 SVHN -- 5.3 CelebA -- 5.4 CIFAR-10 -- 5.5 Convergence Speed of Sample Quality -- 6 Conclusion -- References -- Scatteract: Automated Extraction of Data from Scatter Plots -- 1 Introduction -- 2 Datasets -- 2.1 Procedurally Generated Scatter Plots -- 2.2 Scatter Plots from the Web -- 3 Methodology -- 3.1 Object Detection -- 3.2 Optical Character Recognition -- 3.3 Axis Splitting -- 3.4 RANSAC Regression -- 4 Results -- 4.1 Performance Analysis -- 4.2 Error Analysis -- 5 Conclusion -- References -- Unsupervised Diverse Colorization via Generative Adversarial Networks -- 1 Introduction -- 2 Related Work -- 2.1 Diverse Colorization -- 2.2 Conditional GAN -- 3 Methods -- 3.1 Problem Formulation
2.2 Architecture of Our Network -- 2.3 Objective Function -- 2.4 Learning -- 2.5 Out-of-Sample Extension -- 3 Experiment -- 3.1 Datasets -- 3.2 Results on Image Retrieval -- 3.3 Results on Object Recognition -- 4 Conclusion and Future Work -- References -- Including Multi-feature Interactions and Redundancy for Feature Ranking in Mixed Datasets -- 1 Introduction -- 2 Related Work -- 3 Problem Overview -- 4 Relevance and Redundancy Ranking (RaR) -- 4.1 Subspace Relevance -- 4.2 Decomposition for Feature Relevance Estimation -- 4.3 Redundancy Estimation -- 4.4 RaR: Relevance and Redundancy Scoring -- 4.5 Instantiations for RaR -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Synthetic Data -- 5.3 Parameter Analysis -- 5.4 Robustness w.r.t. Erroneous Labels -- 5.5 Real World Datasets -- 5.6 Evaluation of the Ranking -- 6 Conclusions and Future Works -- References -- Non-redundant Spectral Dimensionality Reduction -- 1 Introduction -- 2 Related Work -- 3 Eliminating Redundancy -- 4 Algorithm -- 4.1 Relation to Independent Component Analysis (ICA) -- 5 Experiments -- 5.1 Artificial Head Images -- 5.2 Image Patch Representation -- 5.3 MNIST Handwritten Digits -- 6 Conclusions -- A A Proof of Lemma 2 -- References -- Rethinking Unsupervised Feature Selection: From Pseudo Labels to Pseudo Must-Links -- 1 Introduction -- 2 Related Work -- 3 Formulations -- 3.1 Notations -- 3.2 Discriminatively Exploiting Similarity -- 4 Instantiations of the DES -- 4.1 Hypothesis Test Based DES (HT-DES) -- 4.2 Classification-Based DES (CL-DES) -- 5 Optimization -- 6 Experiment -- 6.1 Baselines -- 6.2 Datasets -- 6.3 Experimental Setting -- 6.4 Clustering Results -- 6.5 Sensitivity Analysis -- 7 Conclusion -- References -- SetExpan: Corpus-Based Set Expansion via Context Feature Selection and Rank Ensemble -- 1 Introduction -- 2 Related Work
3.2 Architecture and Implementation Details -- 3.3 Training and Testing Procedure -- 4 Experiments -- 4.1 Dataset -- 4.2 Comparison Experiments -- 5 Results and Evaluation -- 5.1 Colorization Results -- 5.2 Evaluation via Human Study -- 6 Conclusion -- References -- Ensembles and Meta Learning -- Dynamic Ensemble Selection with Probabilistic Classifier Chains -- 1 Introduction -- 2 Problem Statement and Contribution -- 2.1 Dynamic Ensemble Selection (DES) -- 2.2 DES as a Multi-label Classification Problem -- 2.3 DES Loss Function -- 2.4 MLC Approaches to the DES Problem -- 2.5 Probabilistic Classifier Chains and Monte Carlo Inference -- 3 Experiments -- 3.1 Ensemble Generation -- 3.2 Compared Methods and Evaluation Protocol -- 3.3 Results and Discussion -- 4 Conclusion -- References -- Ensemble-Compression: A New Method for Parallel Training of Deep Neural Networks -- 1 Introduction -- 2 Preliminary: Parallel Training of DNN -- 3 Model Aggregation: MA vs. Ensemble -- 4 EC-DNN -- 4.1 Framework -- 4.2 Implementations -- 4.3 Time Complexity -- 4.4 Comparison with Traditional Ensemble Methods -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Compared Methods -- 5.3 Experimental Results -- 6 Conclusion and Future Work -- References -- Fast and Accurate Density Estimation with Extremely Randomized Cutset Networks -- 1 Introduction -- 2 Background -- 2.1 Product of Bernoulli Distributions -- 2.2 Probabilistic Tree Models -- 3 Cutset Networks -- 3.1 Learning CNets -- 3.2 Learning Ensembles of CNets -- 4 Extremely Randomized CNets -- 5 Experiments -- 5.1 (Q1) Single Model Performances -- 5.2 (Q2) Ensemble Performances -- 5.3 (Q3) Running Times -- 6 Conclusions -- References -- Feature Selection and Extraction -- Deep Discrete Hashing with Self-supervised Pairwise Labels -- 1 Introduction -- 2 Our Method -- 2.1 Construction of Pairwise Labels
3 Our Methodology: The SetExpan Framework
3 From Robust PCA to Robust Autoencoders -- 3.1 Robust (Convolutional) Autoencoders -- 3.2 Training the Model -- 3.3 Predicting with the Model -- 3.4 Connection to Robust PCA -- 3.5 Relation to Existing Models -- 4 Experimental Setup -- 4.1 Methods Compared -- 4.2 Datasets -- 4.3 Evaluation Methodology -- 4.4 Network Parameters -- 5 Experimental Results -- 5.1 Non-inductive Anomaly Detection Results -- 5.2 Inductive Anomaly Detection Results -- 5.3 Image Denoising Results -- 5.4 Comparison of Training Times -- 6 Conclusion -- References -- Sentiment Informed Cyberbullying Detection in Social Media -- 1 Introduction -- 2 Problem Definition -- 3 Exploratory Data Analysis -- 3.1 Datasets -- 3.2 Verifying the Sentiment Score Distribution Difference -- 3.3 Verifying Sentiment Consistency -- 4 The Proposed Framework - SICD -- 4.1 Modeling Content of Social Media Posts -- 4.2 Modeling User-Post Relationships -- 4.3 Modeling Sentiment Information -- 4.4 Sentiment Informed Cyberbullying Detection (SICD) -- 5 Algorithmic Details -- 5.1 Optimization Algorithm for SICD -- 5.2 Time Complexity Analysis -- 6 Experiments -- 6.1 Experimental Settings -- 6.2 Performance Evaluation -- 6.3 Impact of Sentiment Information -- 6.4 Parameter Sensitivity -- 7 Related Work -- 8 Conclusion and Future Work -- References -- ZOORANK: Ranking Suspicious Entities in Time-Evolving Tensors -- 1 Introduction -- 2 Background and Related Work -- 3 Preliminaries and Problem Definition -- 3.1 Problem Definition -- 3.2 Block Level Suspiciousness Metrics -- 3.3 Axioms -- 3.4 Shortcomings of Other Metrics -- 4 Proposed Approach: ZOORANK -- 4.1 Temporal Feature Handling -- 4.2 Proposed Metric -- 4.3 Algorithm -- 5 Experiments -- 5.1 Datasets -- 5.2 Q1. Effectiveness of ZOORANK -- 5.3 Q2. Generalizability of ZOORANK -- 5.4 Q3. Scalability of ZOORANK -- 6 Conclusions -- References
Title Machine Learning and Knowledge Discovery in Databases
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5577008
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6303206
Volume 10534
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZae-nUJmnRRxJwyKpCNF_imNhOgsTJ5BreDJ50Bly3dhA4Hfrre9SDctwgQbsIEkVQkD5SPH68746xE4S50UUuElCGFigCIAGUkGgJqe_ZHgAGQv_m1lx-U1dTPW0j75bqkg18zX8_qSv5H1SpjHANKtl_QDY2SgV0TvjSkRCm447xGy_r3EulCyQ20VErmeF1Q4-FkJp5cM0sNX0Dv_FhrorGcx_zReMxj4GvxB_riC51i5_V5nkl2vB-uYx3x7SGvV__qlNdj74_3JW26CBWmGBllveDyh23GQVhdxiFhlHc4SS3aLHTi0erUEnD2JKdkD3-rdLwVu0sE33_hmd9ra0tFdqvrc06rHs6vBpNWmbMyRDUJwhxmoZdFSqpfdBfM2dpDozfsS4Gjcgee4Wrffa2yYzB6x_lAdM1QLwBiBNAPALEI0B8seIRoPdscj4c9y-TOkFF4kNUojRxcm4KBK2EsJgrA6kBmu6VMTjXmUuRRkBIZYLS-UIUeS_U0JCBFt4LaeQH1lmtV_iRcaG01LT2zIyxyhXeqSLP3RxSBykWvvjEePPGs3IfvXbenbXf87kqhkyVXmo-v9zKF_am7RSHrLO5f8AjMrw2cFwj9QdWlC_B
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases&rft.au=Ceci%2C+Michelangelo&rft.au=Hollm%C3%A9n%2C+Jaakko&rft.au=Todorovski%2C+Ljup%C4%8Do&rft.au=Vens%2C+Celine&rft.date=2017-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319712482&rft.volume=10534&rft.externalDocID=EBC5577008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783319712482/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783319712482/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783319712482/sc.gif&client=summon&freeimage=true