Performance Evaluation and Benchmarking 13th TPC Technology Conference, TPCTC 2021, Copenhagen, Denmark, August 20, 2021, Revised Selected Papers
This book constitutes the refereed post-conference proceedings of the 13th TPC Technology Conference on Performance Evaluation and Benchmarking, TPCTC 2021, held in August 2021.The 9 papers presented were carefully reviewed and selected from numerous submissions. The TPC encourages researchers and i...
Saved in:
Main Authors | , |
---|---|
Format | eBook |
Language | English |
Published |
Netherlands
Springer Nature
2022
Springer International Publishing AG Springer International Publishing |
Edition | 1 |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3030944379 9783030944377 3030944360 9783030944360 |
Cover
Table of Contents:
- Intro -- Preface -- TPCTC 2021 Organization -- About the TPC -- TPC 2021 Organization -- Contents -- A YCSB Workload for Benchmarking Hotspot Object Behaviour in NoSQL Databases -- 1 Introduction -- 2 Background -- 2.1 Spikes -- 2.2 Yahoo Cloud Serving Benchmark (YCSB) -- 2.3 Problem Statement -- 3 YCSB Workload for Benchmarking Hotspot Object -- 3.1 SpikesGenerator -- 3.2 ObjectDataStore -- 3.3 LocalityManager -- 4 Functional Validation -- 4.1 Experiment Setup -- 4.2 Results -- 5 Related Work -- 6 Conclusion -- References -- IoTDataBench: Extending TPCx-IoT for Compression and Scalability -- 1 Introduction -- 2 Use Case: Benchmarking for Train Monitoring -- 2.1 Benchmarking Result and Settings -- 2.2 Learned Lessons -- 3 Related Works -- 4 IoTDataBench: A TPCx-IoT Evolution -- 4.1 Benchmarking Procedure -- 4.2 Data Model and Data Generation -- 4.3 Workload Generation: Ingestion and Query -- 4.4 Database Scalability Test -- 4.5 Benchmark Driver Architecture -- 4.6 Metrics -- 5 Evaluation -- 5.1 Implementation -- 5.2 Performance Metric Evaluation -- 5.3 Price/Performance Metric Evaluation -- 6 Discussion -- 7 Conclusions -- References -- EvoBench: Benchmarking Schema Evolution in NoSQL -- 1 Introduction -- 2 Related Work -- 3 Benchmark Implementation -- 3.1 Design Criteria -- 3.2 Design Overview -- 3.3 Configuration -- 3.4 Metrics -- 4 Data Generator and Data Sets -- 4.1 Data Sets -- 5 Proof of Concept -- 5.1 Effects of SES-Side, DB-Side and Different Entity Sizes -- 5.2 Comparison Between MongoDB and Cassandra -- 5.3 Effects of a Revised Version of the Schema Evolution System -- 5.4 Differences Between Stepwise and Composite -- 5.5 Comparison of a Real and a Synthetic Data Set -- 6 Conclusion and Future Work -- References -- Everyone is a Winner: Interpreting MLPerf Inference Benchmark Results -- 1 Introduction
- 2 MLPerf Inference Benchmark Suite -- 3 MLPerf Inference from Users Perspective -- 4 MLPerf Insights -- 4.1 Performance Scales Linearly with the Number of Accelerators -- 4.2 (Almost) Same Relative Performance Across All the AI Tasks -- 4.3 Nvidia GPU Performance Comparison -- 4.4 MLPerf Power -- 5 MLPerf Inference Winners -- 5.1 Nvidia -- 5.2 Qualcomm -- 5.3 Total Performance Winners -- 6 Our MLPerf Inference Experience -- 6.1 Work Closely with Chip Manufacturer -- 6.2 Use the Server with the Most Accelerators -- 6.3 A Small Performance Difference Can Have Large Consequences -- 6.4 Results Review -- 6.5 MLCommons Membership is Expensive -- 7 Improvements to MLPerf Inference -- 8 Summary and Conclusions -- References -- CH2: A Hybrid Operational/Analytical Processing Benchmark for NoSQL -- 1 Introduction -- 2 Related Work -- 2.1 HTAP (HOAP) -- 2.2 Benchmarks -- 3 CH2 Benchmark Design -- 3.1 Benchmark Schema -- 3.2 Benchmark Data -- 3.3 Benchmark Operations -- 3.4 Benchmark Queries -- 4 A First Target: Couchbase Server -- 5 Benchmark Results -- 5.1 Benchmark Implementation -- 5.2 Benchmark Configuration(s) -- 5.3 Initial Benchmark Results -- 6 Conclusion -- References -- Orchestrating DBMS Benchmarking in the Cloud with Kubernetes -- 1 Introduction -- 1.1 Contribution -- 1.2 Related Work -- 1.3 Motivation -- 2 Designing Benchmark Experiments in Kubernetes -- 2.1 Components of Cloud-based Benchmarking Experiments -- 2.2 Objects in Kubernetes -- 2.3 Matching Components of Benchmarking to Kubernetes Objects -- 2.4 Scalability -- 2.5 Orchestration -- 3 Experiments -- 3.1 Functional Tests -- 3.2 Stability Tests and Metrics -- 3.3 The Benchmark: Performance of Data Profiling -- 4 Discussion -- 5 Outlook -- 6 Conclusion -- References -- A Survey of Big Data, High Performance Computing, and Machine Learning Benchmarks -- 1 Introduction -- 2 Background
- 2.1 Big Data Benchmarking -- 2.2 High Performance Computing Benchmarking -- 2.3 Machine Learning Benchmarking -- 3 Methodology -- 3.1 Benchmarking Dimensions -- 3.2 Integrated Data Analytics Pipelines -- 3.3 Analysis of Big Data Benchmarks -- 3.4 Analysis of High Performance Computing Benchmarks -- 3.5 Analysis of Machine Learning Benchmarks -- 4 Related Work -- 5 Conclusion -- References -- Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking -- 1 Introduction -- 2 Preliminaries -- 2.1 Database Benchmarks -- 2.2 The OLTPBench Benchmark Harness -- 2.3 JVM and Garbage Collectors -- 3 Experiments -- 3.1 Results -- 4 Discussion -- 5 Threats to Validity -- 6 Related Work -- 7 Conclusion and Outlook -- References -- Quantifying Cloud Data Analytic Platform Scalability with Extended TPC-DS Benchmark -- 1 Introduction -- 1.1 TPC-DS Benchmark -- 1.2 Separation of Storage and Compute in Cloud Data Analytic Platform -- 2 Related Work in Measuring Scalability -- 3 Proposed Extended TPC-DS Benchmark -- 3.1 Abstract Cloud Data Warehouse Resource Level -- 3.2 Normalize Resource Level -- 3.3 Normalize Benchmark Performance Metric -- 3.4 Scalability Factor -- 3.5 Extended TPC-DS Benchmark -- 4 Scalability Analysis for TPC-DS Operations -- 4.1 Load Operation -- 4.2 PowerRun -- 4.3 Throughput Run -- 4.4 Data Maintenance Run -- 4.5 Overall Scalability -- 5 Future Work -- References -- Author Index