Neural Information Processing 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 23-27, 2020, Proceedings, Part I

The three-volume set of LNCS 12532, 12533, and 12534 constitutes the proceedings of the 27th International Conference on Neural Information Processing, ICONIP 2020, held in Bangkok, Thailand, in November 2020. Due to COVID-19 pandemic the conference was held virtually.The 187 full papers presented w...

Full description

Saved in:
Bibliographic Details
Main Authors Yang, Haiqin, Pasupa, Kitsuchart, Leung, Andrew Chi Sing, Kwok, James T, Chan, Jonathan H, King, Irwin
Format eBook Conference Proceeding
LanguageEnglish
Published Cham Springer International Publishing AG 2020
Springer International Publishing
Edition1
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The three-volume set of LNCS 12532, 12533, and 12534 constitutes the proceedings of the 27th International Conference on Neural Information Processing, ICONIP 2020, held in Bangkok, Thailand, in November 2020. Due to COVID-19 pandemic the conference was held virtually.The 187 full papers presented were carefully reviewed and selected from 618 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The first volume, LNCS 12532, is organized in topical sections on human-computer interaction; image processing and computer vision; natural language processing.
AbstractList The three-volume set of LNCS 12532, 12533, and 12534 constitutes the proceedings of the 27th International Conference on Neural Information Processing, ICONIP 2020, held in Bangkok, Thailand, in November 2020. Due to COVID-19 pandemic the conference was held virtually.The 187 full papers presented were carefully reviewed and selected from 618 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The first volume, LNCS 12532, is organized in topical sections on human-computer interaction; image processing and computer vision; natural language processing.
Author King, Irwin
Kwok, James T
Yang, Haiqin
Leung, Andrew Chi Sing
Chan, Jonathan H
Pasupa, Kitsuchart
Author_xml – sequence: 1
  fullname: Yang, Haiqin
– sequence: 2
  fullname: Pasupa, Kitsuchart
– sequence: 3
  fullname: Leung, Andrew Chi Sing
– sequence: 4
  fullname: Kwok, James T
– sequence: 5
  fullname: Chan, Jonathan H
– sequence: 6
  fullname: King, Irwin
BookMark eNpVkE1PwzAMhgMMxDb2Azgg7YY4hCVxmo8jTAMmTcABcY3S1YWx0kDTwd8nWznAxbZeP69le0B6daiRkFPOLjljemK1oUAZMKrAbOMeGSUNkrIT1D7pc8U5BZD24G9PWNYj_VQLarWEIzLgQkhQGXBzTEYxvjHGhBRSS9snZ_e4aXw1ntdlaN59uwr1-LEJS4xxVb-ckMPSVxFHv3lInm9mT9M7uni4nU-vFtRzIaWmaI1mhRKISudel4iSo-ZLZiDLBXjDMs1lkVuZaWNzk8pCWKOs8YXJSwNDctEN9nGN3_E1VG10XxXmIayj-3d4YicdGz-atCM2rqM4c9vXbWkHLvFuZ3Bbx3nn-GjC5wZj63aDl1i36XY3u54qmXgu4Ad2uWWN
ContentType eBook
Conference Proceeding
Copyright Springer Nature Switzerland AG 2020
Copyright_xml – notice: Springer Nature Switzerland AG 2020
DEWEY 006.32
DOI 10.1007/978-3-030-63830-6
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783030638306
3030638308
EISSN 1611-3349
Edition 1
1st Edition 2020
Editor King, Irwin
Yang, Haiqin
Leung, Andrew Chi-Sing
Chan, Jonathan H.
Pasupa, Kitsuchart
Kwok, James T.
Editor_xml – sequence: 1
  givenname: Haiqin
  orcidid: 0000-0001-5453-476X
  surname: Yang
  fullname: Yang, Haiqin
  email: hqyang@ieee.org
– sequence: 2
  givenname: Kitsuchart
  orcidid: 0000-0001-8359-9888
  surname: Pasupa
  fullname: Pasupa, Kitsuchart
  email: kitsuchart@it.kmitl.ac.th
– sequence: 3
  givenname: Andrew Chi-Sing
  orcidid: 0000-0003-0962-6723
  surname: Leung
  fullname: Leung, Andrew Chi-Sing
  email: eeleungc@cityu.edu.hk
– sequence: 4
  givenname: James T.
  orcidid: 0000-0002-4828-8248
  surname: Kwok
  fullname: Kwok, James T.
  email: jamesk@cse.ust.hk
– sequence: 5
  givenname: Jonathan H.
  orcidid: 0000-0002-2384-0462
  surname: Chan
  fullname: Chan, Jonathan H.
  email: jonathan@sit.kmutt.ac.th
– sequence: 6
  givenname: Irwin
  orcidid: 0000-0001-8106-6447
  surname: King
  fullname: King, Irwin
  email: king@cse.cuhk.edu.hk
ExternalDocumentID 9783030638306
496057
EBC6403012
GroupedDBID 38.
AABBV
ABZKH
ACGCR
AEDXK
AEJLV
AEJNW
AEKFX
ALMA_UNASSIGNED_HOLDINGS
APEJL
AVCSZ
AZTDL
BBABE
CYNQG
CZZ
DACMV
ESBCR
I4C
IEZ
OAOFD
OPOMJ
SBO
TPJZQ
TSXQS
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
Z87
ID FETCH-LOGICAL-a12447-e9870d62ee67ba7fee41e71c0835b23a805714db945789b84dbd298698ad8bf83
ISBN 9783030638290
3030638294
ISSN 0302-9743
IngestDate Fri Nov 08 04:27:41 EST 2024
Wed Oct 30 02:36:44 EDT 2024
Tue Mar 12 00:35:45 EDT 2024
IsPeerReviewed true
IsScholarly true
LCCallNum_Ident Q337.5
Language English
LinkModel OpenURL
MeetingName International Conference on Neural Information Processing
MergedId FETCHMERGED-LOGICAL-a12447-e9870d62ee67ba7fee41e71c0835b23a805714db945789b84dbd298698ad8bf83
OCLC 1224365318
PQID EBC6403012
PageCount 834
ParticipantIDs askewsholts_vlebooks_9783030638306
springer_books_10_1007_978_3_030_63830_6
proquest_ebookcentral_EBC6403012
PublicationCentury 2000
PublicationDate 2020
2020-11-18
PublicationDateYYYYMMDD 2020-01-01
2020-11-18
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationYear 2020
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002424749
ssj0002792
Score 2.5375557
Snippet The three-volume set of LNCS 12532, 12533, and 12534 constitutes the proceedings of the 27th International Conference on Neural Information Processing, ICONIP...
SourceID askewsholts
springer
proquest
SourceType Aggregation Database
Publisher
SubjectTerms Computer Applications
Computer Science
Information Systems and Communication Service
Machine Learning
Neural networks (Computer science)-Congresses
Pattern Recognition
Subtitle 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 23-27, 2020, Proceedings, Part I
TableOfContents 3.2 Comparison with State-of-the-Art Method -- 3.3 Ablation Studies -- 4 Conclusion -- References -- An Empirical Study of Deep Neural Networks for Glioma Detection from MRI Sequences -- 1 Introduction -- 2 State of the Art -- 3 Materials and Methods -- 3.1 Material -- 3.2 Model Implementation -- 4 Results -- 4.1 Mixing All -- 4.2 Comparison with UNET3D -- 4.3 Deep Feature Extraction and Interpretation Analysis -- 5 Conclusion -- References -- Analysis of Texture Representation in Convolution Neural Network Using Wavelet Based Joint Statistics -- 1 Introduction -- 2 Methods and Materials -- 2.1 Model Description of VGG16 -- 2.2 Overview of the PSS -- 2.3 Image Dataset -- 3 Experiments and Results -- 3.1 Experiment with LASSO Regression -- 3.2 Analysis of the Synthesized Image with VGG -- 3.3 Results -- 4 Conclusion and Discussion -- References -- Auto-Classifier: A Robust Defect Detector Based on an AutoML Head -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Convolutional Neural Architectures -- 3.2 Auto-Classifier -- 4 Experiments -- 4.1 DAGM2007 -- 4.2 Results and Discussion -- 5 Conclusions -- References -- Automating Inspection of Moveable Lane Barrier for Auckland Harbour Bridge Traffic Safety -- 1 Introduction -- 2 Background -- 2.1 Deep Learning and Object Detection -- 2.2 SqueezeNet Evaluation and Architecture -- 3 Methodology -- 3.1 Design Decisions and Rationale of the Study -- 3.2 Extending Minority Class and Data Pre-processing -- 3.3 Dataset Distribution -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- Bionic Vision Descriptor for Image Retrieval -- 1 Introduction -- 2 Bionic Vision Descriptor -- 2.1 Motivation -- 2.2 Original Bionic Vision Descriptor -- 2.3 Extensional Bionic Vision Descriptor -- 2.4 Feature Selection and Extraction -- 3 Experimental Results -- 4 Conclusion -- References
4.1 Comparison of Different Methods -- 4.2 Ablation Study -- 5 Conclusion -- References -- Deep Patch-Based Human Segmentation -- 1 Introduction -- 2 Related Work -- 2.1 Surface Mapping -- 2.2 Deep Learning on Human Segmentation -- 3 Method -- 3.1 Overview -- 3.2 Surface Mapping -- 3.3 Neural Network and Implementation -- 4 Experimental Results -- 4.1 Dataset Configuration -- 4.2 Evaluation Metric -- 4.3 Visual and Quantitative Results -- 4.4 Ablation Study -- 5 Conclusion -- References -- Deep Residual Local Feature Learning for Speech Emotion Recognition -- 1 Introduction -- 2 Literature Reviews -- 3 The Proposed Model -- 3.1 Raw Data Preparation -- 3.2 Voice Activity Detection -- 3.3 Bias Frame Cleaning -- 3.4 Feature Extraction -- 3.5 Deep Learning -- 4 Experiments and Discussion -- 5 Conclusion -- References -- Densely Multi-path Network for Single Image Super-Resolution -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Network Framework -- 3.2 Densely Multi-path Block -- 3.3 Reconstruction Block -- 4 Experiments -- 4.1 Datasets and Metrics -- 4.2 Training Details -- 4.3 Comparisons with State-of-the-arts -- 5 Conclusions and Future Works -- References -- Denstity Level Aware Network for Crowd Counting -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Architecture -- 3.2 Density Level Estimator -- 3.3 Loss Function -- 4 Experiments -- 4.1 Datasets -- 4.2 Experimental Settings -- 4.3 Performance Comparison -- 4.4 Ablation Study -- 5 Conclusion -- References -- Difficulty Within Deep Learning Object-Recognition Due to Object Variance -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Datasets of Variances for Various NN Architectures -- 3.2 Distribution of Data with Sensitivity Analysis -- 4 Experiments -- 5 Conclusion -- References -- Drawing Dreams -- 1 Introduction -- 2 Related Work -- 3 Method
3.1 Information Extraction
Image Processing and Computer Vision -- A Feature Fusion Network for Multi-modal Mesoscale Eddy Detection -- 1 Introduction -- 2 Related Work -- 2.1 Non-deep Learning Algorithms -- 2.2 Deep Learning Algorithms -- 3 Methodology -- 3.1 FusionNet -- 3.2 The Loss Function -- 4 Experiments -- 4.1 The Multi-modal Dataset -- 4.2 Experimental Results -- 5 Conclusion -- References -- A Hybrid Self-Attention Model for Pedestrians Detection -- 1 Introduction -- 2 Related Work -- 2.1 Pedestrian Detection -- 2.2 Attention Mechanism -- 3 Proposed Method -- 3.1 Revisiting the CSP Detector -- 3.2 Channel Attention -- 3.3 Spatial Attention -- 3.4 Hybrid Attention Fusion Strategy -- 4 Experiments -- 4.1 Dataset and Evaluation Metrics -- 4.2 Ablation Study -- 4.3 Comparison with State of the Arts -- 5 Conclusion -- References -- DF-PLSTM-FCN: A Method for Unmanned Driving Based on Dual-Fusions and Parallel LSTM-FCN -- 1 Introduction -- 2 Related Work -- 3 DF-PLSTM-FCN -- 3.1 Driving Model -- 3.2 Network Structure -- 3.3 Feature Fusion -- 3.4 Decision Fusion -- 3.5 Model Evaluation -- 4 Experiment -- 4.1 Dataset -- 4.2 Parameter Setting -- 4.3 Experiment Analysis -- 4.4 Evaluation Index -- 5 Conclusion -- References -- A Modified Joint Geometrical and Statistical Alignment Approach for Low-Resolution Face Recognition -- 1 Introduction -- 2 Related Work -- 3 Framework for Visual Domain Adaptation -- 3.1 Problem Description -- 3.2 Model Formulation -- 3.3 New Objective Function -- 4 Experiments -- 4.1 Benchmark Datasets -- 4.2 Experimental Results -- 4.3 Experimental Analysis -- 4.4 Parameter Sensitivity Test -- 5 Conclusion -- References -- A Part Fusion Model for Action Recognition in Still Images -- 1 Introduction -- 2 Method -- 2.1 The Guided Attention Module -- 2.2 Two-Level Classification Networks -- 3 Experiments -- 3.1 Experimental Setup
Intro -- Preface -- Organization -- Contents - Part I -- Human-Computer Interaction -- A Genetic Feature Selection Based Two-Stream Neural Network for Anger Veracity Recognition -- 1 Introduction -- 2 Method -- 2.1 Dataset -- 2.2 Network Architecture -- 2.3 Two-Stream Architecture -- 2.4 Data Pre-processing and Feature Selection -- 3 Experiments and Discussions -- 3.1 Experiment Settings -- 3.2 Baseline Model -- 3.3 Experiments on GFS and Two-Stream Architecture -- 3.4 Discussion -- 4 Conclusion and Future Work -- References -- An Efficient Joint Training Framework for Robust Small-Footprint Keyword Spotting -- 1 Introduction -- 2 System Description -- 2.1 Masking-Based Speech Enhancement Method -- 2.2 Feature Transformation Block -- 2.3 Keyword Spotting System -- 3 Experiments and Results -- 3.1 Experimental Settings -- 3.2 Results -- 4 Conclusions -- References -- Hierarchical Interactive Matching Network for Multi-turn Response Selection in Retrieval-Based Chatbots -- 1 Introduction -- 2 Related Work -- 3 Hierarchical Interactive Matching Network -- 3.1 Task Description -- 3.2 Model Overview -- 3.3 Multi-level Attention Representation -- 3.4 Two-Level Hierarchical Interactive Matching -- 3.5 Aggregation -- 4 Experiments -- 4.1 Dataset -- 4.2 Evaluation Metric -- 4.3 Baseline Models -- 4.4 Experiment Settings -- 4.5 Experiment Results -- 4.6 Discussions -- 5 Conclusion -- References -- Investigation of Effectively Synthesizing Code-Switched Speech Using Highly Imbalanced Mix-Lingual Data -- 1 Introduction -- 2 Related Work -- 2.1 Data Sets for the CS TTS -- 2.2 Text Representation for CS TTS -- 3 Proposed Method -- 3.1 General Framework -- 3.2 CS Front-End -- 3.3 Synthesis Module -- 4 Data Description -- 5 Experiments -- 5.1 Input Representations -- 5.2 Experimental Setup -- 5.3 Experimental Results -- 6 Conclusion -- References
Brain Tumor Segmentation from Multi-spectral MR Image Data Using Random Forest Classifier -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data -- 2.2 Pre-processing -- 2.3 Decision Making -- 2.4 Post-processing -- 2.5 Evaluation Criteria -- 3 Results and Discussion -- 4 Conclusions -- References -- CAU-net: A Novel Convolutional Neural Network for Coronary Artery Segmentation in Digital Substraction Angiography -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Feature Fusion Module -- 3.2 Pyramid Feature Concatenation -- 3.3 SE-Block -- 3.4 Loss Function -- 4 Dataset -- 5 Experiments -- 5.1 Implementation Details -- 5.2 Evaluation Metrics -- 5.3 Ablation Experiments -- 5.4 Comparing with Other Methods -- 6 Conclusion -- References -- Combining Filter Bank and KSH for Image Retrieval in Bone Scintigraphy -- 1 Introduction -- 2 Methodology -- 2.1 Texture Feature Extraction with Filter Bank -- 2.2 Supervised Retrieval with Kernels -- 3 Experiments -- 3.1 Dataset and Settings -- 3.2 Quantitative Comparison -- 3.3 Subjective Comparison -- 4 Conclusion -- References -- Contrastive Learning with Hallucinating Data for Long-Tailed Face Recognition -- 1 Introduction -- 2 Related Work -- 2.1 Face Recognition -- 2.2 Contrastive Learning -- 3 Method -- 3.1 Framework -- 3.2 Data Hallucinating -- 3.3 Contrastive Learning -- 3.4 Training and Inference -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Performance on Constrained Datasets -- 4.3 Performance on Unconstrained Datasets -- 4.4 Ablation Studies -- 4.5 Visualization Results -- 5 Conclusion -- References -- Deep Cascade Wavelet Network for Compressed Sensing-MRI -- 1 Introduction -- 2 Methods -- 2.1 Problem Formulation -- 2.2 Overall Structure -- 2.3 Deep Wavelet Block -- 2.4 CA Layer -- 2.5 DC Layer -- 3 Experiments -- 3.1 Dataset -- 3.2 Network Training and Evaluation -- 4 Results
Title Neural Information Processing
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6403012
http://link.springer.com/10.1007/978-3-030-63830-6
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783030638306
Volume 12532
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BWejCW5SXIsSAhILaxPFjYABUVFWAGACxWXbiLKAi0cDAr-ccx0laGIDFihLr4tzn3MPnOwMcUdQyeZ_r0E6nkKQmxV9K9UORGDuh0KIv06NvbunogYyfkqfmFIQyu6TQp-nnj3kl_0EV7yGuNkv2D8jWRPEGXiO-2CLC2M4Zvz_qGVtYoyyVUWcg-n3_vp8dhZmeXVeBgtvXotx_deLPcvC_dtv3j_pzvr9f-5tbPWwWsGacxdi6B7ENnLZkTIwCEV0KJ2OMk4HUVjaMXSXRWkhGiVuH_CZy27sskFyIr7Bto1_qXX8EvaWELcIiE1EHls6H4-vHej3Mpqkw6wpWWtQWNnQRIDdAm5fjP8AVdGx9kA9XVxWDZwbSha6aPqPGQG1STGccibnYd2lS3K_CZpNsGdzV8K7Bgpmsw4pHKKgQWoduq3TkBuw78IMW-EED_iY8Xg3vL0dhddRFqKyBxUIjUHBmNDKGMq1YbgwZGDZIrYWso1hx5NyAZFoQFLFCc7zMIsGp4CrjOufxFnQmrxOzDUGSCcMUM0qJjGTYO1c5o5oJTngUp0kPDlsMkR8vZVh-KhuOYtODwPNJls-rvcJyeHFJifWjox4ce_5JR8GXwEZKMpbYSZbEJN35fdddWG5m-h50ird3s492X6EPqinzBcCnSsw
link.rule.ids 307,310,783,787,789,792,4057,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Neural+Information+Processing&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2020-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030638290&rft.issn=0302-9743&rft.eissn=1611-3349&rft.volume=12532&rft_id=info:doi/10.1007%2F978-3-030-63830-6&rft.externalDocID=496057
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830306%2F9783030638306.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-030-63830-6