Small Polaron Hopping to Efros–Shklovskii-Like Variable Range Hopping Transition in Graphene-Wrapped V2O5 Nanoparticles: The Roleplay of the Mott Gap

V2O5 is a promising candidate in varied fields and has proven to favor polaron formation. Polarons are slow-moving with extra mass, thus affecting conductivity. Charge transport/conductivity is one of the key factors deciding device utility and is compromised due to the slow motion of polarons. To s...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 127; no. 1; pp. 550 - 561
Main Authors Bhaskaram, D. Surya, Govindaraj, G.
Format Journal Article
LanguageEnglish
Published American Chemical Society 12.01.2023
Subjects
Online AccessGet full text
ISSN1932-7447
1932-7455
DOI10.1021/acs.jpcc.2c05863

Cover

Loading…
Abstract V2O5 is a promising candidate in varied fields and has proven to favor polaron formation. Polarons are slow-moving with extra mass, thus affecting conductivity. Charge transport/conductivity is one of the key factors deciding device utility and is compromised due to the slow motion of polarons. To solve this, incorporating graphene into V2O5 is widely practiced. V2O5 exhibiting small polaron hopping is a fact, and variable range hopping of highly mobile electrons is observed in graphene at low temperatures. The inclusion of graphene into V2O5 shows conductivity enhancement and hence has been widely studied for varied applications. The reason for conductivity enhancement is considered to be the presence of delocalized electrons in graphene, which makes the sample electron-rich and increases conductivity. But the actual mechanism of conductivity enhancement is unclear. This led us to explore the electrical properties of graphene-wrapped V2O5. To our surprise, the inclusion of graphene completely changes the dynamics of charge carriers. Polarons in composite chose variable range hopping over Arrhenius-type small polaron hopping in the temperature range of 143–263 K. ac conductivity σ′(ω) data of V2O5 and reduced graphene oxide (RGO)-wrapped V2O5 are analyzed using the Cole–Cole-type combined conduction and dielectric model. σdc of polarons shows T –1 dependence for V2O5 and T –1/2 dependence for RGO-wrapped V2O5 (VRGO). In general, at low temperatures (T < 100 K), such behavior is interpreted to be Efros–Shklovskii (ES) VRH, but the temperature range (143–263 K) that we have covered cannot justify ES-VRH. A detailed overview of the carrier environment is carried out using tools such as XRD and temperature-dependent Raman along with conductivity measurements to account for the T –1/2 dependence of polarons. The results of various measurements point toward the origin of Mott gap in V2O5 after incorporating graphene into it, thus controlling the surprising behavior of polarons.
AbstractList V2O5 is a promising candidate in varied fields and has proven to favor polaron formation. Polarons are slow-moving with extra mass, thus affecting conductivity. Charge transport/conductivity is one of the key factors deciding device utility and is compromised due to the slow motion of polarons. To solve this, incorporating graphene into V2O5 is widely practiced. V2O5 exhibiting small polaron hopping is a fact, and variable range hopping of highly mobile electrons is observed in graphene at low temperatures. The inclusion of graphene into V2O5 shows conductivity enhancement and hence has been widely studied for varied applications. The reason for conductivity enhancement is considered to be the presence of delocalized electrons in graphene, which makes the sample electron-rich and increases conductivity. But the actual mechanism of conductivity enhancement is unclear. This led us to explore the electrical properties of graphene-wrapped V2O5. To our surprise, the inclusion of graphene completely changes the dynamics of charge carriers. Polarons in composite chose variable range hopping over Arrhenius-type small polaron hopping in the temperature range of 143–263 K. ac conductivity σ′(ω) data of V2O5 and reduced graphene oxide (RGO)-wrapped V2O5 are analyzed using the Cole–Cole-type combined conduction and dielectric model. σdc of polarons shows T –1 dependence for V2O5 and T –1/2 dependence for RGO-wrapped V2O5 (VRGO). In general, at low temperatures (T < 100 K), such behavior is interpreted to be Efros–Shklovskii (ES) VRH, but the temperature range (143–263 K) that we have covered cannot justify ES-VRH. A detailed overview of the carrier environment is carried out using tools such as XRD and temperature-dependent Raman along with conductivity measurements to account for the T –1/2 dependence of polarons. The results of various measurements point toward the origin of Mott gap in V2O5 after incorporating graphene into it, thus controlling the surprising behavior of polarons.
Author Bhaskaram, D. Surya
Govindaraj, G.
AuthorAffiliation Department of Physics, School of Physical, Chemical and Applied Sciences
Easwari Engineering College (autonomous)
Department of physics
AuthorAffiliation_xml – name: Department of physics
– name: Department of Physics, School of Physical, Chemical and Applied Sciences
– name: Easwari Engineering College (autonomous)
Author_xml – sequence: 1
  givenname: D. Surya
  orcidid: 0000-0003-2560-222X
  surname: Bhaskaram
  fullname: Bhaskaram, D. Surya
  organization: Easwari Engineering College (autonomous)
– sequence: 2
  givenname: G.
  surname: Govindaraj
  fullname: Govindaraj, G.
  email: ggdipole@gmail.com
  organization: Department of Physics, School of Physical, Chemical and Applied Sciences
BookMark eNo9kM1OAjEURhuDiYDuXfYBHOzPlGHcGYJggmIEcTm5zLRQqG0zHU3c-Q4ufD-fxKqE1T33S-53k9NBLeusROickh4ljF5CGXpbX5Y9VhIx6PMj1KY5Z0mWCtE6cJqdoE4IW0IEJ5S30df8BYzBD85A7SyeOO-1XePG4ZGqXfj--Jxvdsa9hZ3WyVTvJF5CrWFlJH4Eu5aHi0UNNuhGxxJt8bgGv5FWJs8RvKzwks0EvgfrPNSNLo0MV3ixiSXOSG_gHTuFm7jfuabBY_Cn6FiBCfJsP7vo6Wa0GE6S6Wx8O7yeJkAZa5I8W1UVkyJngqUyIhsQVQrOlExlSRUHyQUomldZxStBcq4Il4M0JUBoP-O8iy7-e6O_Yuteaxu_FZQUv1KLvzBKLfZS-Q_orXDZ
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DOI 10.1021/acs.jpcc.2c05863
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 561
ExternalDocumentID c198623211
GroupedDBID .K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
ID FETCH-LOGICAL-a122t-97bdd2e592524edd2280fc532fe4ec1f3ae35af19d7d3d5093f03e8440a016733
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Sat Jan 14 03:10:46 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a122t-97bdd2e592524edd2280fc532fe4ec1f3ae35af19d7d3d5093f03e8440a016733
ORCID 0000-0003-2560-222X
PageCount 12
ParticipantIDs acs_journals_10_1021_acs_jpcc_2c05863
PublicationCentury 2000
PublicationDate 20230112
PublicationDateYYYYMMDD 2023-01-12
PublicationDate_xml – month: 01
  year: 2023
  text: 20230112
  day: 12
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0053013
Score 2.4360092
Snippet V2O5 is a promising candidate in varied fields and has proven to favor polaron formation. Polarons are slow-moving with extra mass, thus affecting...
SourceID acs
SourceType Publisher
StartPage 550
SubjectTerms C: Physical Properties of Materials and Interfaces
Title Small Polaron Hopping to Efros–Shklovskii-Like Variable Range Hopping Transition in Graphene-Wrapped V2O5 Nanoparticles: The Roleplay of the Mott Gap
URI http://dx.doi.org/10.1021/acs.jpcc.2c05863
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF7RcKCXPoCKtlDNAY4bvC8_eouitlHVAGpo6C3a7ANCXDuq3UrlxH_gwP_jlzDruBRBD72tVrZlzY5nvvHMfEPIa5ZYhPmSU-YiS6UXCdUmFdR7jEasZ7FpmsSG7-LBmTw-V-d3NDn_ZvA5e6tN1f26MKbLTaTSWKyQxzxOk8CT3-uPbq2uQkUVywwyIkYpkzYled8TgiMy1V9u5HB9OY-oatgHQ_XIvHtVT7vm2__cjA94ww2y1qJJ6C2Pf5M8csVT8qR_O8TtGfk5utB5Dh9CAFsWMCgDHcNnqEs48Ogff33_Mfoyz8vraj6b0ZPZ3MEYg-fQTgWnoe3gzx2NT2vKu2BWwFGguUYrST_hYuEsjPl7BWipMQRvK-32ATUQTsvcLXJ9A6UHhJowLOsajvTiOTk7PPjYH9B2FgPVjPOaZsnUWu5UxhWXDpc8jbxRgnsnnWFeaCeU9iyziRUWUYjwkXCplJEOjQ5CbJFOURbuBQGeOaklN96pWJoINUNmTDIfRbhhpmKbvEGJTtpvqZo0aXLOJs0minnSinnngdftktUwIz78N2H8JenUl1fuFSKJerrXqNBvCTfFvA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF7R9EAv0NJWUCjMAY6beh-OY24oAgJNoEqAcrM2-4AQ146wQWpP_Q899P_1lzBrHEBVD-W2Gtmr0ex45hvPYwnZZJFBmC85ZTYwVDoRUaXbgjqH0YhxrKWrJrH-Uat7Kg_Pw_M5wma9MMhEgTsVVRL_cboA--RpV1Otm1wHYbslXpCXiEW4H5e_0xnOjG-I-iruE8kIHKWM6szkv3bw_kgXT7zJ3iIZPPBRFZFMmjflqKl__DWi8VmMviYLNbaEnXtleEPmbLZE5juzK93ekt_DbypN4YsPZ_MMurkfznABZQ67Dr3ln5-_hpeTNL8tJuMx7Y0nFs4wlPbNVTDwTQgPb1Qerir2gnEG-37oNdpM-hUXU2vgjB-HgHYbA_K67m4bUB9hkKd2mqrvkDtA4An9vCxhX03fkdO93ZNOl9Y3M1DFOC9pHI2M4TaMOZ6AxSVvB06HgjsrrWZOKCtC5VhsIiMMYhLhAmHbUgbKtz0I8Z40sjyzywR4bKWSXDsbtqQOUE9kzCRzQYAEPRIrZAslmtRfVpFUSXPOkoqIYk5qMX_4z-c2yHz3pN9LegdHn1fJK397vP-jwvgaaZTXN_YjYoxytF5p1R11R84d
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxRBEO4gJOpF8RUVgTrosdfp184ON7KwLApIWFm5TXr7oeuOMxNmINET_4ED_49fQvUwS4zxoLdOZbpTqVRXfTX1aELestgizJecMhdZKr2IqTY9Qb3HaMR61jVNk9j-QXd4LD-cqJMFoua9MMhEhSdVTRI_3OrS-nbCAHsf6N9LYzrcRKrXFffIUsjahZH5m_3R3AAr1Flxm0xG8Chl3GYn_3ZC8Emm-s2jDB6T8R0vTSHJrHNWTzrm1x9jGv-b2WXyqMWYsHmrFE_Igsufkgf9-dNuz8jV6IfOMjgMYW2Rw7AIQxq-Ql3AtkeveX1xOfo2y4rzajad0r3pzMEYQ-rQZAVHoRnhbkfj6ZqiL5jmsBOGX6PtpF9wUToLY_5JAdpvDMzb-rsNQL2EoyJzZaZ_QuEBASjsF3UNO7p8To4H25_7Q9q-0EA147ymSTyxljuVcMWlwyXvRd4owb2TzjAvtBNKe5bY2AqL2ET4SLielJEO7Q9CvCCLeZG7lwR44qSW3HinutJEqC8yYZL5KEKCmYhX5B1KNG1vWJU2yXPO0oaIYk5bMb_-x-_Wyf3DrUG6t3vwcYU8DI_Ihx8rjL8hi_XpmVtFqFFP1hrFugE2BtCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+Polaron+Hopping+to+Efros%E2%80%93Shklovskii-Like+Variable+Range+Hopping+Transition+in+Graphene-Wrapped+V2O5+Nanoparticles%3A+The+Roleplay+of+the+Mott+Gap&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Bhaskaram%2C+D.+Surya&rft.au=Govindaraj%2C+G.&rft.date=2023-01-12&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=127&rft.issue=1&rft.spage=550&rft.epage=561&rft_id=info:doi/10.1021%2Facs.jpcc.2c05863&rft.externalDocID=c198623211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon