Spatially Patterned Architectures to Modulate CO2 Reduction Cascade Catalysis Kinetics

Electrochemical CO2 reduction using renewable sources of electrical energy holds promise for converting CO2 into fuels and chemicals. The complex interactions among chemical/electrochemical reactions and mass transport make it difficult to analyze the effect of an individual process on electrode per...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 15; no. 7; pp. 5894 - 5905
Main Authors García-Batlle, Marisé, Fernandez, Pablo, Sheehan, Colton J., He, Shi, Mallouk, Thomas E., Parsons, Gregory N., Cahoon, James F., Lopez, Rene
Format Journal Article
LanguageEnglish
Published American Chemical Society 04.04.2025
Subjects
Online AccessGet full text
ISSN2155-5435
2155-5435
DOI10.1021/acscatal.5c01176

Cover

Loading…
Abstract Electrochemical CO2 reduction using renewable sources of electrical energy holds promise for converting CO2 into fuels and chemicals. The complex interactions among chemical/electrochemical reactions and mass transport make it difficult to analyze the effect of an individual process on electrode performance based only on experimental methods. Here, we developed a generalized steady-state simulation to describe an electrode surface in which sequential cascade catalysts are patterned in a periodic trench design. If appropriately constructed, this trench geometry is hypothesized to be able to yield a higher net current density for a CO2 reduction (CO2R) cascade reaction. We have used realistic experimental reaction kinetics to investigate the role of trench geometry in mass transport, local microenvironments, and selectivity for a model CO2R cascade reaction. The model considers local concentration gradients of bicarbonate species at quasi-equilibrium and catalytic surface reactions based on concentration-dependent Butler–Volmer kinetics. Our results suggest that varying the spatial distribution of active sites plays a significant role in facilitating effective mass transport between active sites, modulating selectivity for the cascade reaction, and enhancing the yield of desirable cascade products. Moreover, we observe that this trench geometry significantly alters the cascade reaction rate by affecting the local pH, which can cause inadvertent depletion of available aqueous CO2 to limit the CO2R cascade kinetics and modest suppression of the hydrogen evolution reaction (HER). The results highlight the trade-offs between mass transport, pH, and reaction kinetics that become apparent only when considering the coupled physics of all processes at the electrode surface. This model can thus serve as a primary tool to build more selective and efficient patterned architectures for the CO2R cascade catalysis.
AbstractList Electrochemical CO2 reduction using renewable sources of electrical energy holds promise for converting CO2 into fuels and chemicals. The complex interactions among chemical/electrochemical reactions and mass transport make it difficult to analyze the effect of an individual process on electrode performance based only on experimental methods. Here, we developed a generalized steady-state simulation to describe an electrode surface in which sequential cascade catalysts are patterned in a periodic trench design. If appropriately constructed, this trench geometry is hypothesized to be able to yield a higher net current density for a CO2 reduction (CO2R) cascade reaction. We have used realistic experimental reaction kinetics to investigate the role of trench geometry in mass transport, local microenvironments, and selectivity for a model CO2R cascade reaction. The model considers local concentration gradients of bicarbonate species at quasi-equilibrium and catalytic surface reactions based on concentration-dependent Butler–Volmer kinetics. Our results suggest that varying the spatial distribution of active sites plays a significant role in facilitating effective mass transport between active sites, modulating selectivity for the cascade reaction, and enhancing the yield of desirable cascade products. Moreover, we observe that this trench geometry significantly alters the cascade reaction rate by affecting the local pH, which can cause inadvertent depletion of available aqueous CO2 to limit the CO2R cascade kinetics and modest suppression of the hydrogen evolution reaction (HER). The results highlight the trade-offs between mass transport, pH, and reaction kinetics that become apparent only when considering the coupled physics of all processes at the electrode surface. This model can thus serve as a primary tool to build more selective and efficient patterned architectures for the CO2R cascade catalysis.
Author Mallouk, Thomas E.
García-Batlle, Marisé
Fernandez, Pablo
He, Shi
Cahoon, James F.
Sheehan, Colton J.
Lopez, Rene
Parsons, Gregory N.
AuthorAffiliation Department of Chemistry
Department of Physics and Astronomy
Department of Chemical and Biomolecular Engineering
University of North Carolina at Chapel Hill
AuthorAffiliation_xml – name: Department of Chemistry
– name: Department of Physics and Astronomy
– name: Department of Chemical and Biomolecular Engineering
– name: University of North Carolina at Chapel Hill
Author_xml – sequence: 1
  givenname: Marisé
  orcidid: 0000-0002-9142-2430
  surname: García-Batlle
  fullname: García-Batlle, Marisé
  organization: Department of Chemistry
– sequence: 2
  givenname: Pablo
  surname: Fernandez
  fullname: Fernandez, Pablo
  organization: Department of Chemistry
– sequence: 3
  givenname: Colton J.
  orcidid: 0000-0002-0284-5627
  surname: Sheehan
  fullname: Sheehan, Colton J.
  organization: Department of Chemistry
– sequence: 4
  givenname: Shi
  surname: He
  fullname: He, Shi
  organization: University of North Carolina at Chapel Hill
– sequence: 5
  givenname: Thomas E.
  orcidid: 0000-0003-4599-4208
  surname: Mallouk
  fullname: Mallouk, Thomas E.
  organization: Department of Chemistry
– sequence: 6
  givenname: Gregory N.
  orcidid: 0000-0002-0048-5859
  surname: Parsons
  fullname: Parsons, Gregory N.
  organization: Department of Chemical and Biomolecular Engineering
– sequence: 7
  givenname: James F.
  orcidid: 0000-0003-1780-215X
  surname: Cahoon
  fullname: Cahoon, James F.
  organization: Department of Chemistry
– sequence: 8
  givenname: Rene
  orcidid: 0000-0001-6274-066X
  surname: Lopez
  fullname: Lopez, Rene
  email: rln@physics.unc.edu
  organization: University of North Carolina at Chapel Hill
BookMark eNpNkE1Lw0AQhhepYK29e9wfYOruJJtsjiWoFSsVv65hMjvBlJBIdnPovzfFCs7lHd7D-8BzKWZd37EQ11qttAJ9i-QJA7YrQ0rrLD0Tc9DGRCaJzezffyGW3u_VdIlJbabm4vPtG0ODbXuQLxgCDx07uR7oqwlMYRzYy9DL596NLQaWxQ7kK7uRQtN3ssAJ66b2yD74xsunpuPQkL8S5zW2npenXIiP-7v3YhNtdw-PxXoboQYIkVUAUBFWdW5zRmfq2GqVUJ4l4DLWlcOMIE5NnKOxkGbAQJQYZR1bJBcvxM3v7mSg3Pfj0E20UqvyqKX801KetMQ_cS9aBw
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DOI 10.1021/acscatal.5c01176
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 5905
ExternalDocumentID b024269209
GroupedDBID .K2
55A
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
GGK
GNL
IH9
JG~
RNS
ROL
UI2
VF5
VG9
W1F
ID FETCH-LOGICAL-a122t-80222bcabf989ead5f38104c9742d7e1bda7c236539a582672e2cc4508de8acd3
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Mon Apr 07 03:10:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords spatial rearrangement
cascade catalysis
modeling
CO2 reduction
COMSOL
geometrical parametrization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a122t-80222bcabf989ead5f38104c9742d7e1bda7c236539a582672e2cc4508de8acd3
ORCID 0000-0001-6274-066X
0000-0003-1780-215X
0000-0002-0284-5627
0000-0002-0048-5859
0000-0002-9142-2430
0000-0003-4599-4208
PageCount 12
ParticipantIDs acs_journals_10_1021_acscatal_5c01176
PublicationCentury 2000
PublicationDate 20250404
PublicationDateYYYYMMDD 2025-04-04
PublicationDate_xml – month: 04
  year: 2025
  text: 20250404
  day: 04
PublicationDecade 2020
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0000456870
Score 2.4362452
Snippet Electrochemical CO2 reduction using renewable sources of electrical energy holds promise for converting CO2 into fuels and chemicals. The complex interactions...
SourceID acs
SourceType Publisher
StartPage 5894
Title Spatially Patterned Architectures to Modulate CO2 Reduction Cascade Catalysis Kinetics
URI http://dx.doi.org/10.1021/acscatal.5c01176
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8NADMdPUAZYeCPeugHGK8TNJZexiqgqEA8BRd2ie2UBtRJJB_j02NcUKmDolCFRFPmc2D47vz9jZx1rlXWZEwCZEbFxWmhrM6EB44-RvsRzNG1xl_QH8fVQDn8wOb87-BBdaFuFnYy2tMQvS5bZCiQqJU5-N3_63k-h1EQFbTgMYlJITAOaruR_N6FYZKu5SNLbmEoSVQFASAMkr-1Jbdr28y-ecYGH3GTrTULJu1MP2GJLfrTNVvOZjtsOeyHVYfSytw_-EGCa-GHl3bn-QcXrMb8dOxLy8jy_B_5IPFdaMZ7rigbo8VhP4SX8BtNSQjvvskHv6jnvi0ZNQegIoBb0Ty0Yq02ZqQz9R5YE94otFhTgUh_hMqUWOoSq1RKLjhQ8WBtjAue80tZ19lhrNB75fcaVJKRLVKrMxDGWTLp0CZZuKaaGTrnk8oCdo0GK5m2oitDohqiYWalorHS44HVHbA1IdjfMzByzVv0-8SeYC9TmNDjBFy3asBs
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VMpSFN-KNBxhdiBunyVhFoEIfoNKibpFjOwuolUg6wK_nzk1LhRhgipRE1sm-5L7znb8P4LKhdahNZLgQUcr91CiutI64Ehh_UmkzfEbdFv2gPfIfxnJcAW9xFgaNyHGk3BXxv9kFvGu85zY06lITjVmwBuuIRQTR5bfi5-W2CiGU0EnEYSyTXCIaKIuTvw1CIUnnKwHlbgsGS1NcH8lrfVakdf35g6XxX7Zuw2YJL1lr7g87ULGTXajFC1W3PXghDWL0ubcP9uSoNfE3y1or1YScFVPWmxqS9bIsfhRsQOyutH4sVjm10-O1mFOZsA6CVCJ63ofR3e0wbvNSW4ErT4iC0wlbkWqVZlEYoTfJjKi-fI3phTBN6-GiNbVoEHGtkpiCNIUVWvsI54wNlTaNA6hOphN7CCyURPDiZWGU-j4mUCozASZyTQSKJjTBzRFc4YQk5beRJ67sLbxkMUtJOUvHf3zvAmrtYa-bdO_7nRPYECTI67ppTqFavM_sGaKEIj13fvEFVKC4fA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGkIALb8SbHOCYQbOma49TYRoMxgRs2q1Kk_QC2hDtDvDrsbNumhAHOFVqo8hynPpz7HwGOK9rHWoTGS5ElHI_NYorrSOuBPqfVNoMv1G1RTdo9_27oRxWQM7uwqAQOc6UuyQ-7ep3k5UMA94lvneHGjWpicosWIJlytoRZX4zfp4frRBKCV2bOPRnkktEBGWC8rdJyC3pfMGptDZgMBfH1ZK81iZFWtNfP5ga_y3vJqyXMJM1p3axBRU72obVeNbdbQcG1IsYbe_tk_UcxSb-bllzIauQs2LMHsaG2ntZFj8K9kQsr7SOLFY5ldXjs5hSmrAOglUifN6FfuvmJW7zsscCV54QBaebtiLVKs2iMEKrkhlRfvkawwxhGtbDxWtoUScCWyUxFGkIK7T2EdYZGypt6ntQHY1Hdh9YKInoxcvCKPV9DKRUZgIM6BoIGE1ogqsDuECFJOUeyROX_hZeMtNSUmrp8I_jzmCld91K7m-7nSNYE9SX1xXVHEO1-JjYEwQLRXrqTOMbg166_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+Patterned+Architectures+to+Modulate+CO2+Reduction+Cascade+Catalysis+Kinetics&rft.jtitle=ACS+catalysis&rft.au=Garci%CC%81a-Batlle%2C+Marise%CC%81&rft.au=Fernandez%2C+Pablo&rft.au=Sheehan%2C+Colton+J.&rft.au=He%2C+Shi&rft.date=2025-04-04&rft.pub=American+Chemical+Society&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=15&rft.issue=7&rft.spage=5894&rft.epage=5905&rft_id=info:doi/10.1021%2Facscatal.5c01176&rft.externalDocID=b024269209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon