Electrochemical Oxidation of Primary Alcohols Using a Co2NiO4 Catalyst: Effects of Alcohol Identity and Electrochemical Bias on Product Distribution

The electrochemical reduction of CO2 and H2O to solar fuels remains a promising strategy for storing intermittent energy sources in the form of chemical bonds. These electrochemical reductions occurring at the cathode typically are coupled to the oxygen evolution reaction at the anode. The electroch...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 13; no. 1; pp. 515 - 529
Main Authors Michaud, Samuel E., Barber, Michaela M., Rivera Cruz, Kevin E., McCrory, Charles C. L.
Format Journal Article
LanguageEnglish
Published American Chemical Society 06.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electrochemical reduction of CO2 and H2O to solar fuels remains a promising strategy for storing intermittent energy sources in the form of chemical bonds. These electrochemical reductions occurring at the cathode typically are coupled to the oxygen evolution reaction at the anode. The electrochemical oxidation of organic alcohols in the alcohol oxidation reaction is a promising alternative anode reaction that occurs at decreased operating potentials compared to the oxygen evolution reaction and that produces more valuable products than O2. Co2NiO4 is a particularly promising catalyst for the oxidation of alcohols, able to promote alcohol oxidation at current densities of 10 mA cm–2 at potentials of only 1.42 V vs reversible hydrogen electrode (RHE) in alkaline aqueous conditions, significantly less positive than typical potentials required for the oxygen evolution reaction. In this work, we study the alcohol oxidation reaction by Co2NiO4 for a series of straight-chain primary alcohols of increasing chain length from ethanol to n-pentanol. We show that the product distribution for alcohol oxidation depends on the alcohol chain length, changing from primarily aldehyde products for shorter-chain alcohols to primarily carboxylic acid products for longer-chain alcohols. These results suggest that alcohols are oxidized sequentially to first aldehydes and then carboxylic acids at Co2NiO4. During the oxidation of longer-chain alcohols, the aldehyde intermediates are retained at the catalyst surface for longer times, facilitating further oxidation to terminal carboxylic acid products. We also explored the potential-dependent activities and product distributions for n-butanol oxidation at Co2NiO4, and showed that alcohol oxidation is able to outcompete chloride oxidation in aqueous solutions containing Cl– at seawater concentrations. These studies provide further insight into the alcohol oxidation reaction at Co2NiO4 and highlight its promise as an alternative anode reaction for the production solar fuels.
AbstractList The electrochemical reduction of CO2 and H2O to solar fuels remains a promising strategy for storing intermittent energy sources in the form of chemical bonds. These electrochemical reductions occurring at the cathode typically are coupled to the oxygen evolution reaction at the anode. The electrochemical oxidation of organic alcohols in the alcohol oxidation reaction is a promising alternative anode reaction that occurs at decreased operating potentials compared to the oxygen evolution reaction and that produces more valuable products than O2. Co2NiO4 is a particularly promising catalyst for the oxidation of alcohols, able to promote alcohol oxidation at current densities of 10 mA cm–2 at potentials of only 1.42 V vs reversible hydrogen electrode (RHE) in alkaline aqueous conditions, significantly less positive than typical potentials required for the oxygen evolution reaction. In this work, we study the alcohol oxidation reaction by Co2NiO4 for a series of straight-chain primary alcohols of increasing chain length from ethanol to n-pentanol. We show that the product distribution for alcohol oxidation depends on the alcohol chain length, changing from primarily aldehyde products for shorter-chain alcohols to primarily carboxylic acid products for longer-chain alcohols. These results suggest that alcohols are oxidized sequentially to first aldehydes and then carboxylic acids at Co2NiO4. During the oxidation of longer-chain alcohols, the aldehyde intermediates are retained at the catalyst surface for longer times, facilitating further oxidation to terminal carboxylic acid products. We also explored the potential-dependent activities and product distributions for n-butanol oxidation at Co2NiO4, and showed that alcohol oxidation is able to outcompete chloride oxidation in aqueous solutions containing Cl– at seawater concentrations. These studies provide further insight into the alcohol oxidation reaction at Co2NiO4 and highlight its promise as an alternative anode reaction for the production solar fuels.
Author McCrory, Charles C. L.
Rivera Cruz, Kevin E.
Barber, Michaela M.
Michaud, Samuel E.
AuthorAffiliation Department of Chemistry
Macromolecular Science and Engineering Program
University of Michigan
AuthorAffiliation_xml – name: University of Michigan
– name: Macromolecular Science and Engineering Program
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Samuel E.
  surname: Michaud
  fullname: Michaud, Samuel E.
  organization: Department of Chemistry
– sequence: 2
  givenname: Michaela M.
  orcidid: 0000-0002-7267-0412
  surname: Barber
  fullname: Barber, Michaela M.
  organization: Department of Chemistry
– sequence: 3
  givenname: Kevin E.
  surname: Rivera Cruz
  fullname: Rivera Cruz, Kevin E.
  organization: Department of Chemistry
– sequence: 4
  givenname: Charles C. L.
  orcidid: 0000-0001-9039-7192
  surname: McCrory
  fullname: McCrory, Charles C. L.
  email: cmccrory@umich.edu
  organization: University of Michigan
BookMark eNpdkMtOwzAQRS0EEqV0z9IfQMr4lTTsSihQqaIs6Dpy_KCuUluKXYn-Bx9MIoqEmM3M4s490rlC5z54g9ANgSkBSu6kikom2U6pAlpSdoZGlAiRCc7E-Z_7Ek1i3EE_XOSzAkboa9EalbqgtmbvlGzx-tNpmVzwOFj81rm97I543qqwDW3Em-j8B5a4CvTVrTmuBuoxpnu8sLYvisPXKY2X2vjk0hFLr_F_zoOTfdj3iKAPKuFHF1PnmsOAvkYXVrbRTE57jDZPi_fqJVutn5fVfJVJQmnKKM81J4ayhnHIjbYlawoBYEipaanAzHJRSKBcEkVoUdhGzKAkYBXjSgpgY3T709v7q3fh0PmeVhOoB6n1r9T6JJV9A2npb0U
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DOI 10.1021/acscatal.2c02923
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 529
ExternalDocumentID b116991940
GroupedDBID .K2
55A
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
GGK
GNL
IH9
JG~
RNS
ROL
UI2
VF5
VG9
W1F
ID FETCH-LOGICAL-a122t-246d41e23b3406edf93b7500e19d29c0e8657a024a1c1277fb580910fc34ca503
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Tue Jan 10 03:10:43 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords alcohol oxidation
aldehydes
electrochemistry
electrocatalysis
carboxylic acids
nickel cobaltite
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a122t-246d41e23b3406edf93b7500e19d29c0e8657a024a1c1277fb580910fc34ca503
ORCID 0000-0001-9039-7192
0000-0002-7267-0412
PageCount 15
ParticipantIDs acs_journals_10_1021_acscatal_2c02923
PublicationCentury 2000
PublicationDate 20230106
PublicationDateYYYYMMDD 2023-01-06
PublicationDate_xml – month: 01
  year: 2023
  text: 20230106
  day: 06
PublicationDecade 2020
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0000456870
Score 2.4803374
Snippet The electrochemical reduction of CO2 and H2O to solar fuels remains a promising strategy for storing intermittent energy sources in the form of chemical bonds....
SourceID acs
SourceType Publisher
StartPage 515
Title Electrochemical Oxidation of Primary Alcohols Using a Co2NiO4 Catalyst: Effects of Alcohol Identity and Electrochemical Bias on Product Distribution
URI http://dx.doi.org/10.1021/acscatal.2c02923
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDLDwRrzlAUaX2EnshK2EVhUSLRJU6hb5FalCSiWSSpTfwQ_GdlxAhaFbhovPuji6L3eX7wPgSjApMAsYsvRaKOIBR4m5RIXJlYF5_ly50sXjgPZH0cM4Hv_Q5Cx38Am-4bJylYw2kQExcGQdbJhlEju-1cmev-spFpokThvOJLEYxQYG-K7kf4vYXCSrX5mkt9NIElWOgNAOkLy2Z7Voy4-_9IwrbHIXbHtACTvNCdgDa7rcB5vZQsftAHx2G6Ub6akB4PB90ggpwWkBnxq2CdhppHIr6GYIIIfZlAwmwwhm1uG8qm9hQ3Rc2bu8NfS_-c4hLxVc9nM34ca4NC4cqSy8txvy8lqHYNTrvmR95LUYEMeE1IhEVEVYk1CEBgJoVaShMGAj0DhVJJWBTmjMuEn4HEtMGCtEnFgoUsgwsqoL4RFoldNSHwNIKUs1TZlMzLeY4pQnFGOFRSwiKkPFT8C1CWfu36Uqd21ygvNFjHMf49MV7c7AltWId3UTeg5a9dtMXxgkUYtLd4S-AF5HxBw
link.rule.ids 315,783,787,27088,27936,27937,57070,57120
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVKOZQLO2LHBzimxE7iJNxKKCrQBUGReotsJ5EqpFQiqUT5Dj6YseMWVHGAWxRNPCPH0bzM2O8hdC58KYhv-5ai17JcbnMrgEsrg1xpw_vniS5d9Pqs8-Lej7xRDZH5WRgIooCRCt3E_2YXIJdwTxc0mlTaFFDJClr1YDSl1tCKnhdlFYVQAi0RB7nMszxAA6Y5-dsgKiXJ4kdCud1AT4tQ9D6S1-a0FE35scTS-K9YN9G6gZe4Va2HLVRL823UiOaqbjvos13p3khDFIAH7-NKVglPMvxYcU_gViWcW2C9owBzHE1ofzxwcaQczoryCle0x4V6ylhjc-h3hnme4GU_12MOxjm40BSz-EYFZMS2dtHLbXsYdSyjzGBxQmlpUZclLkmpIxwABGmShY4A6GGnJExoKO00YJ7PIf1zIgn1_Ux4gQImmXRcpcHg7KF6PsnTfYQZ88OUhb4M4M8s4YwHjJCECE-4TDoJP0AXMJ2x-bKKWDfNKYnncxybOT78o90ZanSGvW7cves_HKE1pR6vKyrsGNXLt2l6AhijFKd6VX0Bq_zMfA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66gnrxLb7NQY9dm7RNWm9r3cXnKvhgbyWPFhahK7YL6u_wBztJsyLiQW-lpMkwSZivM8n3IXQguZKE-9wz9FpeKHzhxfDoFRArfZh_oW3q4rrPzh7Ci0E0mELR5C4MGFFBT5Ut4ptd_awLxzBAjuC9TWq0qfIpIJNpNBNxQo1iQye9-0qtGJQSW5k4iGeRFwEicAXK3zoxYUlV34JKbxE9fpljz5I8tce1bKv3H0yN_7Z3CS04mIk7zbpYRlN5uYLm0om62yr66Db6N8oRBuCb12Ejr4RHBb5tOChwpxHQrbA9WYAFTke0P7wJcWoGfKvqY9zQH1fmK9cau8u_b1iUGv8c52QooHEJQ1iqWXxqDHKiW2voode9T888p9DgCUJp7dGQ6ZDkNJABAINcF0kgAYL4OUk0TZSfxyziAmCAIIpQzgsZxQagFCoIjRZDsI5a5ajMNxBmjCc5S7iK4Q9NCyZiRogmMpIhU4EWm-gQ3Jm5HVZltnhOSTbxceZ8vPXHdvto9va0l12d9y-30bwRkbeJFbaDWvXLON8FqFHLPbuwPgFUlM72
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Oxidation+of+Primary+Alcohols+Using+a+Co2NiO4+Catalyst%3A+Effects+of+Alcohol+Identity+and+Electrochemical+Bias+on+Product+Distribution&rft.jtitle=ACS+catalysis&rft.au=Michaud%2C+Samuel+E.&rft.au=Barber%2C+Michaela+M.&rft.au=Rivera+Cruz%2C+Kevin+E.&rft.au=McCrory%2C+Charles+C.+L.&rft.date=2023-01-06&rft.pub=American+Chemical+Society&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=13&rft.issue=1&rft.spage=515&rft.epage=529&rft_id=info:doi/10.1021%2Facscatal.2c02923&rft.externalDocID=b116991940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon