Machine Learning and Knowledge Discovery in Databases European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part III

Saved in:
Bibliographic Details
Main Authors Brefeld, Ulf, Curry, Edward, Daly, Elizabeth, MacNamee, Brian, Marascu, Alice, Pinelli, Fabio, Berlingerio, Michele, Hurley, Neil
Format eBook
LanguageEnglish
Published Cham Springer International Publishing AG 2019
Edition1
Subjects
Online AccessGet full text

Cover

Loading…
Author Berlingerio, Michele
Brefeld, Ulf
Curry, Edward
Pinelli, Fabio
Marascu, Alice
MacNamee, Brian
Hurley, Neil
Daly, Elizabeth
Author_xml – sequence: 1
  fullname: Brefeld, Ulf
– sequence: 2
  fullname: Curry, Edward
– sequence: 3
  fullname: Daly, Elizabeth
– sequence: 4
  fullname: MacNamee, Brian
– sequence: 5
  fullname: Marascu, Alice
– sequence: 6
  fullname: Pinelli, Fabio
– sequence: 7
  fullname: Berlingerio, Michele
– sequence: 8
  fullname: Hurley, Neil
BookMark eNpVzLtOwzAUgGEjLoKWvIM3pkrH8TUjpKUgglgQa3Vsn5RAZEMcQLw9AyxMv77lX7CjlBMdsKqxToIEAU1j1eE_G3vCFgKclGCl0KesKuUFAGohjNbNGdP3GJ6HRLwjnNKQ9hxT5Hcpf40U98TXQwn5k6ZvPiS-xhk9Firn7LjHsVD11yV7ut48tjer7mF72152KxQCjFoZ3QunCEhrDIhEWqEPwpsQnaMY61BbFBCMi2T6JngbdfTWKtMb46yWS3bxO36b8vsHlXlHPufXQGmecNxtrlrd1LJWIH8A0ZpKqg
ContentType eBook
DEWEY 6.31
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030109974
3030109976
Edition 1
ExternalDocumentID EBC5923240
GroupedDBID 0D6
0DA
38.
AABBV
AEDXK
AEJLV
AEKFX
AEZAY
AIFIR
ALEXF
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7U
Z7W
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-a11064-65f184e0e55acaaee54abc1b6cd88edd2c27a10c68de6f9cb7d5db7746f668753
ISBN 9783030109967
3030109968
IngestDate Thu Apr 24 04:17:07 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident QA76.9.D343
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a11064-65f184e0e55acaaee54abc1b6cd88edd2c27a10c68de6f9cb7d5db7746f668753
OCLC 1083307315
PQID EBC5923240
PageCount 724
ParticipantIDs proquest_ebookcentral_EBC5923240
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationYear 2019
Publisher Springer International Publishing AG
Publisher_xml – name: Springer International Publishing AG
SSID ssj0002116559
Score 2.0925734
SourceID proquest
SourceType Publisher
SubjectTerms Data mining-Congresses
Machine learning-Congresses
Subtitle European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part III
TableOfContents Implicit Linking of Food Entities in Social Media -- 1 Introduction -- 2 Empirical Analysis -- 2.1 Datasets -- 2.2 Analysis -- 3 Models -- 3.1 Entity-Indicative Weighting (EW) -- 3.2 Query Expansion with Same-Venue Posts -- 3.3 Fused Model (EWQE) -- 3.4 Venue-Based Prior -- 4 Experiments -- 4.1 Setup -- 4.2 Results -- 4.3 Case Studies -- 4.4 Parameter Sensitivity -- 5 Related Work -- 6 Conclusion -- References -- A Practical Deep Online Ranking System in E-commerce Recommendation -- 1 Introduction -- 2 Related Work -- 2.1 Static Recommendation -- 2.2 Time-Aware Recommendation -- 2.3 Online Recommendation -- 3 The Deep Online Ranking System -- 3.1 Candidate Retrieval -- 3.2 Learning-to-Rank via DNN -- 3.3 Online Re-ranking via MAB -- 4 Experiments -- 4.1 Case Study -- 4.2 Experiment Setup -- 4.3 Production Performance -- 4.4 Distribution Analysis -- 4.5 System Specifications -- 5 Conclusion -- References -- ADS Engineering and Design -- Helping Your Docker Images to Spread Based on Explainable Models -- 1 Introduction -- 2 Background -- 3 Docker Images and Popularity Problems -- 4 Proposed Approach -- 4.1 Estimating Popularity -- 4.2 Recommending Improvements -- 5 Experiments -- 5.1 Dataset -- 5.2 Experimental Settings -- 5.3 Estimating Image Popularity -- 5.4 Recommending Image Improvements -- 5.5 Explaining Improvement Features -- 5.6 Portability of Our Approach -- 6 Related Work -- 7 Conclusion -- References -- ST-DenNetFus: A New Deep Learning Approach for Network Demand Prediction -- 1 Introduction -- 2 Related Work -- 3 External Factors Extraction -- 4 Deep Spatio-Temporal Dense Network with Data Fusion (ST-DenNetFus) -- 4.1 Network Throughput Input Data -- 4.2 External Factors and Fusion -- 5 Experiments Setup -- 5.1 Dataset -- 5.2 Baselines -- 6 Results -- 7 Conclusion -- References
On Optimizing Operational Efficiency in Storage Systems via Deep Reinforcement Learning -- 1 Introduction -- 1.1 The Problem -- 1.2 Related Work and Our Contributions -- 2 Our DRL-Based Solution -- 2.1 Reinforcement Learning (RL) Preliminaries -- 2.2 State, Action and Reward Formulations -- 2.3 Algorithm: The Advantage Actor-Critic (A2C) Agent -- 2.4 Actor-Critic Network Architecture -- 3 Experimental Setup and Results -- 3.1 Timelines -- 3.2 I/O Scenarios -- 3.3 Hyperparameters -- 3.4 Results -- 4 Concluding Remarks -- References -- Automating Layout Synthesis with Constructive Preference Elicitation -- 1 Introduction -- 2 Related Work -- 3 Coactive Learning for Automated Layout Synthesis -- 4 Experiments -- 4.1 Furniture Arrangement -- 4.2 Floor Planning -- 5 Conclusion -- References -- Configuration of Industrial Automation Solutions Using Multi-relational Recommender Systems -- 1 Introduction -- 2 Notation and Background -- 3 Related Methods -- 3.1 General Recommender Systems -- 3.2 Knowledge Graph Methods -- 4 Our Method -- 5 Real-World Experimental Study -- 5.1 Data -- 5.2 Implementation -- 5.3 Evaluation Scheme -- 5.4 Results -- 6 Conclusion -- References -- Learning Cheap and Novel Flight Itineraries -- 1 Introduction -- 2 Data Set -- 2.1 Diversity of Airlines and Routes -- 2.2 Temporal Patterns -- 3 Predictive Construction of Combination Itineraries -- 3.1 Problem Formulation -- 3.2 Models -- 3.3 Location Representations -- 3.4 Prediction Performance -- 4 Putting the Model in Production -- 4.1 Model Parameters -- 4.2 Architecture of the Pipeline -- 4.3 Performance in Production -- 5 Related Work -- 6 Conclusions -- References -- Towards Resource-Efficient Classifiers for Always-On Monitoring -- 1 Introduction -- 2 Background and Notations -- 2.1 Bayesian Classifiers -- 2.2 Bayesian Inference and Knowledge Compilation
2 Preliminaries -- 2.1 Product Lifecycle Model -- 2.2 Reinforcement Learning and DDPG Methods -- 3 A Scalable Reinforcement Mechanism Design Framework -- 3.1 First Principal Component Based Permutation -- 3.2 Repeated Sampling Based Experiences Generation -- 4 Experimental Results -- 4.1 The Configuration -- 4.2 The Results -- 5 Conclusions and Future Work -- References -- Discovering Bayesian Market Views for Intelligent Asset Allocation -- 1 Introduction -- 2 Bayesian Asset Allocation -- 3 Methodologies -- 3.1 Modeling Market Views -- 3.2 The Confidence Matrix -- 3.3 Optimal Market Views -- 3.4 Generating Market Views with Neural Models -- 4 Experiments -- 4.1 Data -- 4.2 Trading Simulation -- 4.3 Performance Metrics -- 4.4 Findings -- 5 A Story -- 6 Conclusion and Future Work -- References -- Intent-Aware Audience Targeting for Ride-Hailing Service -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 3.1 Problem Definition -- 3.2 Data Specification -- 4 The Intent Prediction Model -- 4.1 Sequential Pattern Mining -- 4.2 Map Query Based LSTM Method -- 4.3 Combination of LSTM and GBDT -- 5 Experiment -- 5.1 Data Description -- 5.2 Model Comparison -- 5.3 Experiment Results -- 6 Online Evaluation -- 7 Conclusion -- References -- A Recurrent Neural Network Survival Model: Predicting Web User Return Time -- 1 Introduction -- 2 Background -- 2.1 Survival Analysis -- 2.2 Cox Proportional Hazards Model -- 2.3 Recurrent Neural Networks, LSTM, and Embeddings -- 2.4 Recurrent Temporal Point Processes -- 3 Method -- 3.1 Heterogeneous Markers -- 3.2 Recurrent Neural Network Survival Model (RNNSM) -- 3.3 Return Time Predictions -- 4 Experiments -- 4.1 Result on Performance Metrics -- 4.2 Prediction Error in Relation to True Return Time -- 4.3 Error in Relation to Number of Active Days -- 5 Discussion -- References
4.4 No Labeled Data for Negative Samples Problem -- 5 System -- 5.1 Data Augment with Sliding Window -- 5.2 Feature Extraction Through Center Radiation -- 5.3 Ensemble Algorithm -- 6 Experiment -- 6.1 Experiment Setup -- 6.2 Experiment Result and Discussion -- 7 Conclusion -- References -- From Empirical Analysis to Public Policy: Evaluating Housing Systems for Homeless Youth -- 1 Introduction -- 1.1 Our Goal -- 2 Current Approach for Housing Prioritization -- 3 Description of the Data -- 3.1 Features from the Youth -- 3.2 Types of Exits from Homelessness -- 4 Methodology and Evaluation Metrics -- 4.1 Classifiers -- 4.2 Performance Measure -- 4.3 Building the Final Model -- 5 Decision Rules and Youths' Most Likely Exits -- 5.1 Decision Rules for Assigning Youth to PSH and RRH -- 5.2 Youths' Exits to Family and Self Resolve -- 6 Outcome of the Current Housing Assignment Process -- 7 Predicting the Outcomes of Housing Assignments -- 7.1 Logistic Regressions and Decision Trees -- 7.2 Significant Features of the Learned Models -- 8 Policy Recommendations from Our Empirical Analysis -- 9 Conclusion, Discussion, and Future Work -- References -- Discovering Groups of Signals in In-Vehicle Network Traces for Redundancy Detection and Functional Grouping -- 1 Introduction and Related Work -- 2 Preparing Traces -- 2.1 Automotive Traces -- 2.2 Data Extraction and Cleaning -- 3 Feature Engineering -- 3.1 Feature Extraction -- 3.2 Wrapper-Based Feature Selection -- 3.3 Feature Transformation -- 4 Clustering -- 4.1 Properties and Approaches -- 4.2 Suitability Analysis -- 5 Evaluation -- 5.1 Experimental Setup -- 5.2 Window Size -- 5.3 Feature Selection -- 5.4 Comparison of Clustering Algorithms -- 6 Case Study -- 7 Conclusion -- References -- ADS E-commerce -- SPEEDING Up the Metabolism in E-commerce by Reinforcement Mechanism DESIGN -- 1 Introduction
2.3 Same-Decision Probability
Intro -- Foreword to Applied Data Science, Demo, and Nectar Tracks -- Preface -- Organization -- Contents -- Part III -- Contents -- Part I -- Contents -- Part II -- ADS Data Science Applications -- Neural Article Pair Modeling for Wikipedia Sub-article Matching -- 1 Introduction -- 2 Related Work -- 3 Modeling -- 3.1 Preliminaries -- 3.2 Document Encoders -- 3.3 Explicit Features -- 3.4 Training -- 4 Experiments -- 4.1 Evaluation -- 4.2 Mining Sub-articles from the Entire English Wikipedia -- 5 Conclusion and Future Work -- References -- LinNet: Probabilistic Lineup Evaluation Through Network Embedding -- 1 Introduction -- 2 Materials and Methods -- 2.1 LinNet -- 2.2 Baselines -- 2.3 Datasets -- 3 Analysis and Results -- 3.1 Prediction Accuracy -- 3.2 Probability Calibration -- 3.3 Dimensionality of LinNet -- 3.4 Season Win-Loss Record and Lineup Performance -- 4 Discussion and Conclusions -- References -- Improving Emotion Detection with Sub-clip Boosting -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 The SCB Framework -- 5 Sub-clip Classification Boosting -- 5.1 Sub-clip Generation -- 5.2 Sub-classification and Emotion Strength Pairs -- 5.3 Clip Classification ``Oracle'' -- 6 Experimental Evaluation -- 6.1 Benchmark Data Sets -- 6.2 Comparison of Alternate Methods -- 6.3 Evaluation Settings -- 6.4 Evaluating ``Oracle'' Implementations -- 6.5 Hyper Parameter Tuning -- 6.6 Overall Results -- 7 Conclusion and Future Work -- References -- Machine Learning for Targeted Assimilation of Satellite Data -- 1 Introduction -- 2 Related Work -- 3 Data -- 3.1 Global Forecast System Data -- 3.2 International Best Track Archive for Climate Stewardship (IBTrACS) -- 4 Issues and Challenges -- 4.1 Area Size Determination Problem -- 4.2 Occasional Weather Events Problem -- 4.3 Weather Events Location Problem
Title Machine Learning and Knowledge Discovery in Databases
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5923240
Volume 11053
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b4MwELWaZOnUb_VbHrpSAcEGxiRNG6VVpiTKFtnGSJVaKkVk6a_vHcYmSStV7YIAISPzkO_u-e4eIXcSXGrN49RTOs68qBsHHhhhCFWwdYnOAwwJMNtiwkezaLxgi0aVtaouKeW9-vyxruQ_qMI9wBWrZP-ArBsUbsA54AtHQBiOO86vu6y1l6oUSG27o5oyw2dLj2FLTYWpmVVN34MoBdqqhg9HaRHDB8_ecrcJsV6ZHXUj49ww2EaKejP9y1LYE_Fu0nj6K_uT1fwBlixt8QeWP9xhIDdIsN7TVszZxSAK_EqjouEWUfDTuo1NcZl-w_6Apei1-S3SiuOkTTq94fhl7niwEPv_sBTLbuzAiWmM1Lzom52sjP_0kHQ0VoQckT1dHJMDq4NB62XxhLAaDmrhoAAHdXBQBwd9LaiD45TMH4fTwcir5Sg8AbPjkcdZDvGw9jVjQgmhNYuEVIHkKksSnWWhCmMR-IonmeZ5qmScsUyCf81zzjEuPCPt4qPQ54RGuYTFj6PSC4bUsIj6EObwzJc4apheEGpnvKx2zetU3WXzPS9_f-SK7DeIX5N2uVrrG_ChSnlbw_AFNModmA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases&rft.au=Brefeld%2C+Ulf&rft.au=Curry%2C+Edward&rft.au=Daly%2C+Elizabeth&rft.au=MacNamee%2C+Brian&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030109967&rft.volume=11053&rft.externalDocID=EBC5923240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783030109967/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783030109967/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783030109967/sc.gif&client=summon&freeimage=true