Handbook of microbial nanotechnology

Handbook of Microbial Nanotechnology is a collection of the most recent scientific advancements in the fundamental application of microbial nanotechnology across various sectors. This comprehensive handbook highlights the vast subject areas of microbial nanotechnology and its potential applications...

Full description

Saved in:
Bibliographic Details
Main Author Hussain, Chaudhery Mustansar
Format eBook Book
LanguageEnglish
Published London Academic Press, an imprint of Elsevier 2022
Elsevier Science & Technology
Academic Press
Edition1
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • 11.6.3 Time-kill method
  • 5.2.2.5 Other biosensors -- 5.2.2.5.1 Genosensors -- 5.2.2.5.2 Bioluminescence sensors -- 5.2.2.5.3 Flow cell-based displacement fluorescent biosensor -- 5.3 Optical biosensors and methods -- 5.3.1 Biofunctionalization strategies -- 5.3.2 Polymer optical fibers -- 5.3.3 Immobilization of metal nanoparticles -- 5.3.4 Aptamers as biorecognition elements -- 5.3.4.1 Molecular level interactions in optical biosensor -- 5.4 Nanomaterial enhanced biosensors -- 5.4.1 Surface plasmon resonance-based biosensors -- 5.4.1.1 Detection using evanescent-field sensing -- 5.4.1.2 Surface plasmon resonance based fiber optic biosensors for bacterial detection -- 5.4.2 Fluorescence-based fiber optic biosensors -- 5.4.2.1 Sandwich immunoassays -- 5.4.3 Raman spectroscopy and surface enhanced Raman spectroscopy -- 5.4.3.1 Raman spectroscopic studies for detection of bacteria -- 5.4.3.2 Strategies for obtaining surface enhanced Raman spectroscopy of bacteria -- 5.4.3.2.1 Colloidal silver and/or gold nanoparticles -- 5.4.3.2.2 Surface enhanced Raman spectroscopy using 1D/2D/3D substrates -- 5.4.3.2.3 Labeled surface enhanced Raman spectroscopy of bacteria -- 5.5 Conclusion -- References -- Further reading -- 6 Utilization of flow cytometry in nanomaterial/bionanomaterial detection -- 6.1 Introduction -- 6.2 Flow cytometer: principles and instrumentation -- 6.2.1 Principle of flow cytometry -- 6.2.2 Instrumentation -- 6.3 Flow cytometry and its applications in research -- 6.3.1 Immunophenotyping -- 6.3.2 Cell sorting -- 6.3.3 Cell cycle analysis -- 6.3.4 Apoptosis -- 6.3.5 Intracellular calcium flux -- 6.3.6 Analysis of microbiota -- 6.4 Nanotechnology and flow cytometry -- 6.4.1 Imaging of nanoparticles in suspension -- 6.4.2 Detection of nanoparticles -- 6.5 Conclusion -- References -- 7 Utilization of Raman spectroscopy in nanomaterial/bionanomaterial detection
  • 7.1 Introduction -- 7.2 Raman: principle and instrumentation -- 7.2.1 Principle: Raman scattering and shift -- 7.2.1.1 Raman scattering -- 7.2.2 Instrumentation -- 7.2.2.1 Light source-lasers -- 7.2.2.2 Filters and other optical components -- 7.2.2.3 Detectors -- 7.2.3 Variants in Raman spectroscopy -- 7.2.3.1 Surface-enhanced Raman spectroscopy -- 7.2.3.2 Spatially offset Raman spectroscopy -- 7.2.3.3 Surface-enhanced spatially offset Raman spectroscopy -- 7.3 Detecting nanoparticles in cells using Raman spectroscopy -- 7.3.1 Surface-enhanced Raman spectroscopy -- 7.3.1.1 Nanoparticles in biological systems -- 7.3.1.2 Plasmonic nanostructured particles endocytosis -- 7.3.1.3 Organelle targeting -- 7.3.1.4 Surface-enhanced Raman spectroscopy data collection -- 7.3.1.5 Spatially offset Raman spectroscopy -- 7.3.1.6 Data analysis -- 7.3.1.7 Surface-enhanced spatially offset Raman spectroscopy -- 7.4 Detecting nanoparticles in cells using Raman spectroscopy -- 7.5 Conclusion -- References -- 8 Nanotechnology based Pathogen identification through surface marker identification -- 8.1 Introduction -- 8.2 Nanotechnological advancement in pathogen identification -- 8.2.1 Gold nanoparticle-based detection -- 8.2.2 Silver nanoparticle-based detection -- 8.2.3 Quantum dot-based detection -- 8.2.4 Carbon nanotube-based detection -- 8.2.5 Magnetic nanoparticle-based detection -- 8.3 Trends and challenges -- 8.4 Conclusion -- Abbreviation -- References -- 9 Microalgae nanotechnology and drug development -- 9.1 Introduction -- 9.2 Microalgae production of metallic nanoparticles -- 9.2.1 Microalgal synthesis of metallic nanoparticles -- 9.2.2 Silver nanoparticles for use in antibiotic applications -- 9.2.3 Microalgae production of gold and other metallic nanoparticles -- 9.3 Microalgae production of biomolecules for pharmaceutical applications
  • 3.2.4 Extracellular DNA -- 3.3 Conventional methods -- 3.3.1 Cell culture and colony counting based methods -- 3.3.2 Microscopy -- 3.3.3 Polymerase chain reaction -- 3.3.4 Immunology-based detection methods -- 3.3.5 Flow cytometry -- 3.3.6 Biosensors-based detection -- 3.4 Switching from conventional to nanotechnological approach -- 3.4.1 Immunosensor -- 3.4.2 Surface-enhanced Raman spectroscopy-based biosensor -- 3.4.2.1 Label-free biosensor -- 3.4.2.2 Label-based biosensor -- 3.4.3 Colorimetric Sensor -- 3.4.4 Fluorometric sensor -- 3.4.5 Electrochemical sensor -- 3.4.6 Miscellaneous sensing platforms -- 3.5 Conclusion and future prospects -- Abbreviations -- References -- 4 An overview of microbial calcite nanoparticle generation in self-healing concrete: its potential, advantages, and limitat... -- 4.1 Introduction -- 4.2 Constituents of microbial concrete -- 4.3 Implantation of healing agents and precipitation process inside the matrix -- 4.4 Performance and enhancement of bioconcrete properties -- 4.5 Potential of bioconcrete in the construction industry -- 4.6 Advantages and disadvantages -- 4.7 Conclusion -- References -- 5 Nanobiosensors for detection of bacteria: an overview of fiber-optics and Raman spectroscopy based biosensors -- 5.1 Introduction -- 5.2 Biosensors for pathogen detection -- 5.2.1 Classification based on biorecognition element -- 5.2.1.1 Biocatalytic biosensors or enzymatic biosensors -- 5.2.1.2 Biocomplexing biosensors or affinity biosensors -- 5.2.1.3 Nucleic acid biosensors -- 5.2.1.4 Whole cell detection biosensors -- 5.2.2 Classification based on the transducer component -- 5.2.2.1 Mass-based biosensors -- 5.2.2.2 Thermal biosensors -- 5.2.2.3 Electrochemical biosensors -- 5.2.2.3.1 Impedance biosensors -- 5.2.2.3.2 Amperometric biosensors -- 5.2.2.3.3 Potentiometric biosensors -- 5.2.2.4 Optical biosensors
  • Front Cover -- Handbook of Microbial Nanotechnology -- Copyright Page -- Dedication -- Contents -- List of contributors -- About the editor -- Preface -- Acknowledgments -- 1 Microbial nanotechnology-based approaches for wound healing and infection control -- 1.1 Introduction -- 1.2 Wound healing and infection control: an insight -- 1.3 Use of nanotechnology in wound healing and infection control -- 1.3.1 Current therapies and their drawbacks -- 1.3.2 Current nanoplatforms for wound healing and infection control -- 1.4 Microbial synthesis of nanomaterials -- 1.5 Methods of microbial-based green synthesis of nanomaterials -- 1.5.1 Bacterial-mediated synthesis of nanoparticles -- 1.5.2 Fungal-mediated synthesis of nanoparticles -- 1.5.3 Microalgal-mediated synthesis of nanoparticles -- 1.6 Microbially synthesized nanomaterials for wound healing and infection control -- 1.6.1 Gold nanoparticles -- 1.6.2 Silver nanoparticles -- 1.6.3 Metal oxide nanoparticles -- 1.7 Antibacterial mechanisms of metal-based nanoparticles -- 1.8 Conclusions and future outlook -- References -- 2 Cancer therapeutics with microbial nanotechnology-based approaches -- 2.1 Introduction of cancer, current state, treatments, and limitations -- 2.2 Introduction of nanoparticles, advantages, properties, synthesis pathways, and the emerging use of microbial synthesis -- 2.3 Synthesis pathways and general characteristics -- 2.4 Direct therapeutic mechanisms (nanoparticles as therapy) -- 2.5 Indirect therapeutic mechanism -- 2.6 Current challenges and prospects in clinical translation -- 2.7 Conclusion -- References -- 3 Nanotechnological interventions for the detection of pathogens through surface marker recognition -- 3.1 Introduction -- 3.2 Biomarkers exposed on the surface of microorganisms -- 3.2.1 Surface proteins -- 3.2.2 Carbohydrates -- 3.2.3 Glycoproteins
  • 9.3.1 Bioassay-guided fractionation and other methods for determining bioactivity -- 9.3.2 Anticancer bioactive compounds from microalgae -- 9.3.3 Antimicrobial bioactive compounds from microalgae -- 9.3.4 Microalgal drug discovery for other health applications -- 9.3.5 Phycotoxins as potential drugs -- 9.4 Microalgae as facilitating technologies -- 9.4.1 Genetic transformation of microalgae as drug factories -- 9.4.2 Microalgae as scavengers -- 9.5 Summary and conclusions -- References -- 10 Regulations and risk assessment of microbial green nanotechnology -- 10.1 Introduction -- 10.2 Microbial green synthesis of nanomaterials -- 10.2.1 Intracellular synthesis -- 10.2.2 Extracellular synthesis -- 10.3 Life cycle assessment of nanomaterials: environmental and health risk assessment -- 10.4 Influencing factors in toxicity of green nanomaterials -- 10.5 Challenges on safety assessment -- 10.6 Global regulatory aspects on microbial green nanotechnology -- 10.7 Conclusion and future trends/Green Nano Policy recommendations -- Conflicts of interest -- References -- 11 Nanoparticles as antibacterial agent for dental restorative materials and their antibacterial activity evaluation -- 11.1 Introduction -- 11.1.1 Dental restorative materials -- 11.2 Nanoparticles as fillers in restorative materials -- 11.3 Surface morphology and roughness of restorative materials with different filler sizes -- 11.4 A study of surface roughness relation with bacterial accumulation -- 11.5 Nanoparticles as antibacterial agents and their mechanisms -- 11.5.1 Nano zinc oxide particles -- 11.5.2 Nanosilver particles -- 11.5.3 Nanographene -- 11.6 Antibacterial evaluation technique -- 11.6.1 Disk diffusion -- 11.6.2 Broth dilution method -- 11.6.2.1 Broth macrodilution method -- 11.6.2.2 Broth microdilution method -- 11.6.2.3 Quality control for broth dilution method