Intelligent Control of Medium and High Power Converters

The growing share of renewable energies, as well as the rising demand for electricity for transport and heating, are increasing the importance of power converters and the requirements for reliability and control. Intelligent control can increase converter efficiency, reducing size and weight. The ap...

Full description

Saved in:
Bibliographic Details
Main Authors Bendaoud, Mohamed, Maleh, Yassine, Padmanaban, Sanjeevikumar
Format eBook Book
LanguageEnglish
Published Stevenage The Institution of Engineering and Technology 2023
Institution of Engineering & Technology
Institution of Engineering and Technology
Edition1
SeriesEnergy Engineering
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • Chapter 1: Power electronics converters - an overviewChapter 2: Sliding mode control of bidirectional DC-DC converter for EVsChapter 3: High-gain DC-DC converter with extremum seeking control for PV applicationChapter 4: A control scheme to optimize efficiency of GaN-based DC-DC convertersChapter 5: Control design of grid-connected three-phase invertersChapter 6: Sliding mode control of a three-phase inverterChapter 7: Sliding-mode control of a three-level NPC grid-connected inverterChapter 8: Neuro control of grid-connected three-phase invertersChapter 9: Low switching frequency operation of multilevel converters for high-power applicationsChapter 10: Comparison and overview of power converter control methods
  • 5.3.1 Control architecture of GFL inverters -- 5.3.2 PLL -- 5.3.3 Power controller -- 5.3.4 Current controller -- 5.4 Results and discussion -- 5.4.1 Real-time co-simulation testbed -- 5.4.2 Power hardware-in-loop testbed -- 5.5 Conclusion -- References -- 6 Sliding mode control of a three-phase inverter -- 6.1 Introduction -- 6.2 Modeling description and control of the inverter -- 6.2.1 Mathematical model of the DC/AC converter -- 6.2.2 Proposed SMA -- 6.3 SMA for performance improvement of WPS fed by VSI -- 6.3.1 Modeling description of the WECS -- 6.3.2 SMA of the rectifier and MPP tracking approach -- 6.4 Simulation and evaluation of performance -- 6.5 Conclusions -- References -- 7 Sliding-mode control of a three-level NPC grid-connected inverter -- 7.1 Introduction -- 7.2 Three-phase grid-connected NPC inverter -- 7.3 Reaching law in SMC -- 7.3.1 Sliding surface design -- 7.4 Super twisting SMC -- 7.4.1 Control design -- 7.4.2 Stability of the super twisting SMC -- 7.5 Results and discussion -- 7.6 Conclusion -- References -- 8 Neuro control of grid-connected three-phase inverters -- 8.1 Introduction -- 8.2 System description -- 8.3 Control design -- 8.3.1 Neural network approximation -- 8.3.2 Neuro sliding mode control design -- 8.4 Simulation results -- 8.5 Conclusion -- References -- 9 Low switching frequency operation of multilevel converters for high-power applications -- 9.1 Introduction -- 9.2 Selective harmonic minimization problem formulation -- 9.3 Solving techniques -- 9.3.1 Numerical techniques -- 9.3.2 Algebraic methods -- 9.3.3 Intelligent algorithms -- 9.4 Results and discussion -- 9.5 Comparative analysis -- 9.6 Conclusion and future work -- References -- 10 Comparison and overview of power converter control methods -- 10.1 Introduction -- 10.2 Nonlinear controllers for power converters -- 10.2.1 Sliding mode
  • 10.2.2 Model predictive control -- 10.3 Intelligent controllers for power converter -- 10.3.1 Fuzzy logic controller (FLC) -- 10.3.2 Artificial neural network -- 10.3.3 Metaheuristic optimization -- 10.4 Comparative performance analysis -- 10.5 Conclusion -- References -- Index
  • Intro -- Title -- Copyright -- Contents -- About the editors -- Preface -- 1 Power electronics converters-an overview -- 1.1 Introduction -- 1.2 DC-DC converters -- 1.2.1 Non-isolated DC-DC converters -- 1.2.2 Isolated DC-DC converters -- 1.2.3 Resonant converters -- 1.3 DC-AC converters -- 1.3.1 Two-level single-phase and three-phase inverters -- 1.3.2 Classification of two-level three-phase inverters -- 1.3.3 Multilevel inverters -- 1.3.4 Review of a novel proposed MLIs -- 1.4 Conclusion -- References -- 2 Sliding mode control of bidirectional DC-DC converter for EVs -- 2.1 Introduction -- 2.2 Sliding mode control of bidirectional DC-DC converter -- 2.2.1 Modeling of the converter -- 2.2.2 Choice of sliding surface -- 2.2.3 Derivation of control law -- 2.2.4 Derivation of existence and stability conditions -- 2.2.5 Sliding mode parameter selection using HHO algorithm -- 2.3 Simulation and experimental verifications -- 2.4 Conclusion -- References -- 3 High-gain DC-DC converter with extremum seeking control for PV application -- 3.1 Introduction -- 3.2 System description -- 3.2.1 Photovoltaic array -- 3.2.2 Suggested high-gain DC-DC converter -- 3.3 Proposed AESC technique -- 3.3.1 Line search-based optimization methods -- 3.3.2 Control scheme -- 3.3.3 Extremum seeking control approach -- 3.3.4 Convergence analysis of the AESC approach -- 3.4 Simulation and comparison results -- 3.4.1 Scenario 1 -- 3.4.2 Scenario 2 -- 3.5 Conclusion -- References -- 4 A control scheme to optimize efficiency of GaN-based DC-DC converters -- 4.1 Introduction -- 4.2 Proposed control scheme -- 4.3 Simulation and experimental verification -- 4.4 Conclusions -- References -- 5 Control design of grid-connected three-phase inverters -- 5.1 Introduction -- 5.2 Inverter topologies -- 5.2.1 Grid forming inverters -- 5.2.2 Grid following inverters -- 5.3 Control strategies