BiG-MAP: an Automated Pipeline To Profile Metabolic Gene Cluster Abundance and Expression in Microbiomes
Microbial gene clusters encoding the biosynthesis of primary and secondary metabolites play key roles in shaping microbial ecosystems and driving microbiome-associated phenotypes. Although effective approaches exist to evaluate the metabolic potential of such bacteria through identification of these...
Saved in:
Published in | mSystems Vol. 6; no. 5 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
1752 N St., N.W., Washington, DC
American Society for Microbiology
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microbial gene clusters encoding the biosynthesis of primary and secondary metabolites play key roles in shaping microbial ecosystems and driving microbiome-associated phenotypes. Although effective approaches exist to evaluate the metabolic potential of such bacteria through identification of these metabolic gene clusters in their genomes, no automated pipelines exist to profile the abundance and expression levels of such gene clusters in microbiome samples to generate hypotheses about their functional roles, and to find associations with phenotypes of interest. Here, we describe BiG-MAP, a bioinformatic tool to profile abundance and expression levels of gene clusters across metagenomic and metatranscriptomic data and evaluate their differential abundance and expression under different conditions. To illustrate its usefulness, we analyzed 96 metagenomic samples from healthy and caries-associated human oral microbiome samples and identified 252 gene clusters, including unreported ones, that were significantly more abundant in either phenotype. Among them, we found the muc operon, a gene cluster known to be associated with tooth decay. Additionally, we found a putative reuterin biosynthetic gene cluster from a Streptococcus strain to be enriched but not exclusively found in healthy samples; metabolomic data from the same samples showed masses with fragmentation patterns consistent with (poly)acrolein, which is known to spontaneously form from the products of the reuterin pathway and has been previously shown to inhibit pathogenic Streptococcus mutans strains. Thus, we show how BiG-MAP can be used to generate new hypotheses on potential drivers of microbiome-associated phenotypes and prioritize the experimental characterization of relevant gene clusters that may mediate them. IMPORTANCE Microbes play an increasingly recognized role in determining host-associated phenotypes by producing small molecules that interact with other microorganisms or host cells. The production of these molecules is often encoded in syntenic genomic regions, also known as gene clusters. With the increasing numbers of (multi)omics data sets that can help in understanding complex ecosystems at a much deeper level, there is a need to create tools that can automate the process of analyzing these gene clusters across omics data sets. This report presents a new software tool called BiG-MAP, which allows assessing gene cluster abundance and expression in microbiome samples using metagenomic and metatranscriptomic data. Here, we describe the tool and its functionalities, as well as its validation using a mock community. Finally, using an oral microbiome data set, we show how it can be used to generate hypotheses regarding the functional roles of gene clusters in mediating host phenotypes. |
---|---|
AbstractList | Microbes play an increasingly recognized role in determining host-associated phenotypes by producing small molecules that interact with other microorganisms or host cells. The production of these molecules is often encoded in syntenic genomic regions, also known as gene clusters. Microbial gene clusters encoding the biosynthesis of primary and secondary metabolites play key roles in shaping microbial ecosystems and driving microbiome-associated phenotypes. Although effective approaches exist to evaluate the metabolic potential of such bacteria through identification of these metabolic gene clusters in their genomes, no automated pipelines exist to profile the abundance and expression levels of such gene clusters in microbiome samples to generate hypotheses about their functional roles, and to find associations with phenotypes of interest. Here, we describe BiG-MAP, a bioinformatic tool to profile abundance and expression levels of gene clusters across metagenomic and metatranscriptomic data and evaluate their differential abundance and expression under different conditions. To illustrate its usefulness, we analyzed 96 metagenomic samples from healthy and caries-associated human oral microbiome samples and identified 252 gene clusters, including unreported ones, that were significantly more abundant in either phenotype. Among them, we found the muc operon, a gene cluster known to be associated with tooth decay. Additionally, we found a putative reuterin biosynthetic gene cluster from a Streptococcus strain to be enriched but not exclusively found in healthy samples; metabolomic data from the same samples showed masses with fragmentation patterns consistent with (poly)acrolein, which is known to spontaneously form from the products of the reuterin pathway and has been previously shown to inhibit pathogenic Streptococcus mutans strains. Thus, we show how BiG-MAP can be used to generate new hypotheses on potential drivers of microbiome-associated phenotypes and prioritize the experimental characterization of relevant gene clusters that may mediate them. IMPORTANCE Microbes play an increasingly recognized role in determining host-associated phenotypes by producing small molecules that interact with other microorganisms or host cells. The production of these molecules is often encoded in syntenic genomic regions, also known as gene clusters. With the increasing numbers of (multi)omics data sets that can help in understanding complex ecosystems at a much deeper level, there is a need to create tools that can automate the process of analyzing these gene clusters across omics data sets. This report presents a new software tool called BiG-MAP, which allows assessing gene cluster abundance and expression in microbiome samples using metagenomic and metatranscriptomic data. Here, we describe the tool and its functionalities, as well as its validation using a mock community. Finally, using an oral microbiome data set, we show how it can be used to generate hypotheses regarding the functional roles of gene clusters in mediating host phenotypes. |
Author | van den Berg, Koen Augustijn, Hannah E. van der Hooft, Justin J. J. Medema, Marnix H. Fischbach, Michael A. Pascal Andreu, Victória |
Author_xml | – sequence: 1 givenname: Victória orcidid: 0000-0001-9609-9401 surname: Pascal Andreu fullname: Pascal Andreu, Victória – sequence: 2 givenname: Hannah E. orcidid: 0000-0002-1862-6699 surname: Augustijn fullname: Augustijn, Hannah E. – sequence: 3 givenname: Koen surname: van den Berg fullname: van den Berg, Koen – sequence: 4 givenname: Justin J. J. orcidid: 0000-0002-9340-5511 surname: van der Hooft fullname: van der Hooft, Justin J. J. – sequence: 5 givenname: Michael A. orcidid: 0000-0003-3079-8247 surname: Fischbach fullname: Fischbach, Michael A. email: fischbach@fischbachgroup.org – sequence: 6 givenname: Marnix H. orcidid: 0000-0002-2191-2821 surname: Medema fullname: Medema, Marnix H. email: marnix.medema@wur.nl |
BookMark | eNo1kMtOwzAQRS0EEqX0A9j5B1L8SOKEXalKQWpFF2VtTZwJuErsyk4k-veEFlYj3ZHOvTp35Np5h4Q8cDbnXBSPXTzFHrs4Z6yUKhH8ikyEVGWSMaVuySzGA2OM51JxUU7I17NdJ9vF7omCo4uh9x30WNOdPWJrHdK9p7vgG9si3WIPlW-toWscP8t2GIsCXVSDq8EZHAk1XX0fA8ZovaPW0a01wVfWdxjvyU0DbcTZ352Sj5fVfvmabN7Xb8vFJgHOMkiaphAMGjCirAuDRqZpySE3LJWMp5mUosqlrCosJMqmUjXHUgDjpUgzLOpCTsnbhVt7OOhjsB2Ek_Zg9Tnw4VND6K1pUWcZ5rnhgmGqUlM2gELJVFVgGg5cwsiaX1gQO6EPfghunK4507-q9b9qfVatBZc_cB53Ng |
Cites_doi | 10.1021/ci300563h 10.1093/bioinformatics/btp352 10.1126/science.1254766 10.1186/s12859-016-1278-0 10.1038/s41564-017-0089-z 10.1177/0022034517698096 10.1038/s41587-019-0375-9 10.1093/nar/gky1033 10.1128/JB.00542-10 10.1038/nrmicro2334 10.1128/mBio.01947-17 10.1093/nar/gkx935 10.1038/s41592-020-0933-6 10.1038/srep37479 10.1016/j.tplants.2012.04.001 10.1038/nbt.3597 10.1128/mBio.00321-19 10.1111/imr.12567 10.1038/nrmicro2259 10.1093/nar/gkr466 10.1038/s41589-019-0400-9 10.1038/s41467-019-11673-0 10.1007/s00018-018-2901-1 10.1186/1471-2105-6-225 10.1093/bioinformatics/btq033 10.1093/molbev/mst025 10.1126/science.1203980 10.1186/s13059-016-0997-x 10.1016/j.ijfoodmicro.2004.03.006 10.4103/jomfp.JOMFP_304_18 10.1093/femsre/fux014 10.1021/acsinfecdis.9b00365 10.1186/2047-217X-1-7 10.1007/s10482-015-0524-1 10.1093/nar/gkz654 10.1002/pol.1984.170220115 10.1038/s41587-018-0008-8 10.1186/1753-6561-5-S2-S9 10.1093/bioinformatics/btw313 10.1007/s12275-011-0252-9 10.1038/nmeth.2658 10.1093/bioinformatics/btu379 10.1093/nar/gkz310 10.1093/nar/gkr988 10.1093/dnares/dsn009 10.1002/mnfr.200700412 10.1177/0022034518805739 10.1128/mSystems.00058-17 10.1126/science.aax9176 10.1038/srep36246 10.1016/j.cell.2018.07.038 10.1038/srep26447 10.1093/nar/gks251 10.1038/nmeth.1923 10.1038/s41592-018-0176-y |
ContentType | Journal Article |
Copyright | Copyright © 2021 Pascal Andreu et al. |
Copyright_xml | – notice: Copyright © 2021 Pascal Andreu et al. |
DBID | DOA |
DOI | 10.1128/msystems.00937-21 |
DatabaseName | DOAJ - Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2379-5077 |
Editor | Shank, Elizabeth Anne |
Editor_xml | – sequence: 1 givenname: Elizabeth Anne surname: Shank fullname: Shank, Elizabeth Anne |
ExternalDocumentID | oai_doaj_org_article_55e66c120e474c9fae27347bacf1a13a mSystems00937-21 |
GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) grantid: ASDI.2017.030 funderid: https://doi.org/10.13039/501100003246 – fundername: DOD | Defense Advanced Research Projects Agency (DARPA) grantid: HR0011-15-C-0084 funderid: https://doi.org/10.13039/100000185 – fundername: Chan Zuckerberg Initiative (CZI) funderid: https://doi.org/10.13039/100014989 |
GroupedDBID | 0R~ 3V. 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAUOK ABUWG ACPRK ADBBV AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU EBS FRP FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M48 M7P M~E O9- OK1 PIMPY PQQKQ PROAC RHI RPM RSF UKHRP AAGFI H13 PHGZM PHGZT PQGLB PUEGO |
ID | FETCH-LOGICAL-a105a-ff820afac29d8cec34491a6c0430145332b633bbe83e3fb7d1e92a019245e8d83 |
IEDL.DBID | M48 |
IngestDate | Wed Aug 27 01:29:28 EDT 2025 Sun Aug 11 18:20:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | metabolic gene cluster metatranscriptomics metabolomics metagenomics biosynthesis specialized metabolism microbiome microbiome-associated phenotype |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a105a-ff820afac29d8cec34491a6c0430145332b633bbe83e3fb7d1e92a019245e8d83 |
ORCID | 0000-0002-9340-5511 0000-0002-2191-2821 0000-0001-9609-9401 0000-0002-1862-6699 0000-0003-3079-8247 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mSystems.00937-21 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_55e66c120e474c9fae27347bacf1a13a asm2_journals_10_1128_msystems_00937_21 |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | 1752 N St., N.W., Washington, DC |
PublicationPlace_xml | – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mSystems |
PublicationTitleAbbrev | mSystems |
PublicationYear | 2021 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Patiny, L, Borel, A (B54) 2013; 53 Paulson, JN, Stine, OC, Bravo, HC, Pop, M (B22) 2013; 10 Hibbing, ME, Fuqua, C, Parsek, MR, Peterson, SB (B3) 2010; 8 Ondov, BD, Treangen, TJ, Melsted, P, Mallonee, AB, Bergman, NH, Koren, S, Phillippy, AM (B20) 2016; 17 Angly, FE, Willner, D, Rohwer, F, Hugenholtz, P, Tyson, GW (B51) 2012; 40 Edlund, A, Garg, N, Mohimani, H, Gurevich, A, He, X, Shi, W, Dorrestein, PC, McLean, JS (B30) 2017; 2 Graves, DT, Corrêa, JD, Silva, TA (B27) 2019; 98 Deo, PN, Deshmukh, R (B26) 2019; 23 Garcia, SS, Blackledge, MS, Michalek, S, Su, L, Ptacek, T, Eipers, P, Morrow, C, Lefkowitz, EJ, Melander, C, Wu, H (B29) 2017; 96 Dewhirst, FE, Chen, T, Izard, J, Paster, BJ, Tanner, ACR, Yu, W-H, Lakshmanan, A, Wade, WG (B28) 2010; 192 Langmead, B, Salzberg, SL (B21) 2012; 9 B34 Fischbach, MA (B9) 2018; 174 Mendes, R, Kruijt, M, de Bruijn, I, Dekkers, E, van der Voort, M, Schneider, JH, Piceno, YM, DeSantis, TZ, Andersen, GL, Bakker, PA, Raaijmakers, JM (B7) 2011; 332 Kang, M-S, Oh, J-S, Lee, H-C, Lim, H-S, Lee, S-W, Yang, K-H, Choi, N-K, Kim, S-M (B44) 2011; 49 Garsin, DA (B5) 2010; 8 Berendsen, RL, Pieterse, CMJ, Bakker, PAHM (B2) 2012; 17 Kanehisa, M, Goto, S, Sato, Y, Furumichi, M, Tanabe, M (B17) 2012; 40 Hannigan, GD, Prihoda, D, Palicka, A, Soukup, J, Klempir, O, Rampula, L, Durcak, J, Wurst, M, Kotowski, J, Chang, D, Wang, R, Piizzi, G, Temesi, G, Hazuda, DJ, Woelk, CH, Bitton, DA (B12) 2019; 47 Hao, T, Xie, Z, Wang, M, Liu, L, Zhang, Y, Wang, W, Zhang, Z, Zhao, X, Li, P, Guo, Z, Gao, S, Lou, C, Zhang, G, Merritt, J, Horsman, GP, Chen, Y (B57) 2019; 10 Liu, B, Pop, M (B14) 2011; 5 Martinez, X, Pozuelo, M, Pascal, V, Campos, D, Gut, I, Gut, M, Azpiroz, F, Guarner, F, Manichanh, C (B16) 2016; 6 Stevens, JF, Maier, CS (B40) 2008; 52 Tang, X, Kudo, Y, Baker, JL, LaBonte, S, Jordan, PA, McKinnie, SMK, Guo, J, Huan, T, Moore, BS, Edlund, A (B33) 2020; 6 Sugimoto, Y, Camacho, FR, Wang, S, Chankhamjon, P, Odabas, A, Biswas, A, Jeffrey, PD, Donia, MS (B32) 2019; 366 Zhang, J, Sturla, S, Lacroix, C, Schwab, C (B41) 2018; 9 Morita, H, Toh, H, Fukuda, S, Horikawa, H, Oshima, K, Suzuki, T, Murakami, M, Hisamatsu, S, Kato, Y, Takizawa, T, Fukuoka, H, Yoshimura, T, Itoh, K, O’Sullivan, DJ, McKay, LL, Ohno, H, Kikuchi, J, Masaoka, T, Hattori, M (B39) 2008; 15 Pickard, JM, Zeng, MY, Caruso, R, Núñez, G (B4) 2017; 279 Brial, F, Le Lay, A, Dumas, M-E, Gauguier, D (B8) 2018; 75 Kim, J, Kim, MS, Koh, AY, Xie, Y, Zhan, X (B15) 2016; 17 Tomfohr, J, Lu, J, Kepler, TB (B36) 2005; 6 Schirmer, M, Franzosa, EA, Lloyd-Price, J, McIver, LJ, Schwager, R, Poon, TW, Ananthakrishnan, AN, Andrews, E, Barron, G, Lake, K, Prasad, M, Sauk, J, Stevens, B, Wilson, RG, Braun, J, Denson, LA, Kugathasan, S, McGovern, DPB, Vlamakis, H, Xavier, RJ, Huttenhower, C (B25) 2018; 3 Medema, MH, Blin, K, Cimermancic, P, de Jager, V, Zakrzewski, P, Fischbach, MA, Weber, T, Takano, E, Breitling, R (B47) 2011; 39 Wang, M, Jarmusch, AK, Vargas, F, Aksenov, AA, Gauglitz, JM, Weldon, K, Petras, D, da Silva, R, Quinn, R, Melnik, AV, van der Hooft, JJJ, Caraballo-Rodríguez, AM, Nothias, LF, Aceves, CM, Panitchpakdi, M, Brown, E, Di Ottavio, F, Sikora, N, Elijah, EO, Labarta-Bajo, L, Gentry, EC, Shalapour, S, Kyle, KE, Puckett, SP, Watrous, JD, Carpenter, CS, Bouslimani, A, Ernst, M, Swafford, AD, Zúñiga, EI, Balunas, MJ, Klassen, JL, Loomba, R, Knight, R, Bandeira, N, Dorrestein, PC (B37) 2020; 38 Zou, Y, Xue, W, Luo, G, Deng, Z, Qin, P, Guo, R, Sun, H, Xia, Y, Liang, S, Dai, Y, Wan, D, Jiang, R, Su, L, Feng, Q, Jie, Z, Guo, T, Xia, Z, Liu, C, Yu, J, Lin, Y, Tang, S, Huo, G, Xu, X, Hou, Y, Liu, X, Wang, J, Yang, H, Kristiansen, K, Li, J, Jia, H, Xiao, L (B24) 2019; 37 Liu, L, Hao, T, Xie, Z, Horsman, GP, Chen, Y (B46) 2016; 6 Li, H, Handsaker, B, Wysoker, A, Fennell, T, Ruan, J, Homer, N, Marth, G, Abecasis, G, Durbin, R (B49) 2009; 25 Navarro-Muñoz, JC, Selem-Mojica, N, Mullowney, MW, Kautsar, SA, Tryon, JH, Parkinson, EI, De Los Santos, ELC, Yeong, M, Cruz-Morales, P, Abubucker, S, Roeters, A, Lokhorst, W, Fernandez-Guerra, A, Cappelini, LTD, Goering, AW, Thomson, RJ, Metcalf, WW, Kelleher, NL, Barona-Gomez, F, Medema, MH (B19) 2020; 16 Wang, M, Carver, JJ, Phelan, VV, Sanchez, LM, Garg, N, Peng, Y, Nguyen, DD, Watrous, J, Kapono, CA, Luzzatto-Knaan, T, Porto, C, Bouslimani, A, Melnik, AV, Meehan, MJ, Liu, W-T, Crüsemann, M, Boudreau, PD, Esquenazi, E, Sandoval-Calderón, M, Kersten, RD, Pace, LA, Quinn, RA, Duncan, KR, Hsu, C-C, Floros, DJ, Gavilan, RG, Kleigrewe, K, Northen, T, Dutton, RJ, Parrot, D, Carlson, EE, Aigle, B, Michelsen, CF, Jelsbak, L, Sohlenkamp, C, Pevzner, P, Edlund, A, McLean, J, Piel, J, Murphy, BT, Gerwick, L, Liaw, C-C, Yang, Y-L, Humpf, H-U, Maansson, M, Keyzers, RA, Sims, AC, Johnson, AR, Sidebottom, AM, Sedio, BE (B35) 2016; 34 Engels, C, Schwab, C, Zhang, J, Stevens, MJ, Bieri, C, Ebert, MO, McNeill, K, Sturla, SJ, Lacroix, C (B38) 2016; 6 B11 Gu, Z, Eils, R, Schlesner, M (B52) 2016; 32 McDonald, D, Clemente, JC, Kuczynski, J, Rideout, JR, Stombaugh, J, Wendel, D, Wilke, A, Huse, S, Hufnagle, J, Meyer, F, Knight, R, Caporaso, JG (B23) 2012; 1 Tracanna, V, de Jong, A, Medema, MH, Kuipers, OP (B6) 2017; 41 Aleti, G, Baker, JL, Tang, X, Alvarez, R, Dinis, M, Tran, NC, Melnik, AV, Zhong, C, Ernst, M, Dorrestein, PC, Edlund, A (B31) 2019; 10 Nothias, L-F, Petras, D, Schmid, R, Dührkop, K, Rainer, J, Sarvepalli, A, Protsyuk, I, Ernst, M, Tsugawa, H, Fleischauer, M, Aicheler, F, Aksenov, AA, Alka, O, Allard, P-M, Barsch, A, Cachet, X, Caraballo-Rodriguez, AM, Da Silva, RR, Dang, T, Garg, N, Gauglitz, JM, Gurevich, A, Isaac, G, Jarmusch, AK, Kameník, Z, Kang, KB, Kessler, N, Koester, I, Korf, A, Le Gouellec, A, Ludwig, M, Martin H, C, McCall, L-I, McSayles, J, Meyer, SW, Mohimani, H, Morsy, M, Moyne, O, Neumann, S, Neuweger, H, Nguyen, NH, Nothias-Esposito, M, Paolini, J, Phelan, VV, Pluskal, T, Quinn, RA, Rogers, S, Shrestha, B, Tripathi, A, van der Hooft, JJJ (B53) 2020; 17 Quinlan, AR, Hall, I (B50) 2010; 26 Blin, K, Shaw, S, Steinke, K, Villebro, R, Ziemert, N, Lee, SY, Medema, MH, Weber, T (B10) 2019; 47 Phanstiel, DH, Boyle, AP, Araya, CL, Snyder, MP (B45) 2014; 30 Nikawa, H, Makihira, S, Fukushima, H, Nishimura, H, Ozaki, Y, Ishida, K, Darmawan, S, Hamada, T, Hara, K, Matsumoto, A, Takemoto, T, Aimi, R (B43) 2004; 95 Donia, MS, Fischbach, MA (B1) 2015; 349 Kim, S, Chen, J, Cheng, T, Gindulyte, A, He, J, He, S, Li, Q, Shoemaker, BA, Thiessen, PA, Yu, B, Zaslavsky, L, Zhang, J, Bolton, EE (B55) 2019; 47 Rocha, DJP, Santos, CS, Pacheco, LGC (B48) 2015; 108 Caspi, R, Billington, R, Fulcher, CA, Keseler, IM, Kothari, A, Krummenacker, M, Latendresse, M, Midford, PE, Ong, Q, Ong, WK, Paley, S, Subhraveti, P, Karp, PD (B18) 2018; 46 Shlomo, M, Wiesel, E (B42) 1984; 22 Medema, MH, Takano, E, Breitling, R (B56) 2013; 30 Franzosa, EA, McIver, LJ, Rahnavard, G, Thompson, LR, Schirmer, M, Weingart, G, Lipson, KS, Knight, R, Caporaso, JG, Segata, N, Huttenhower, C (B13) 2018; 15 |
References_xml | – volume: 53 start-page: 1223 year: 2013 end-page: 1228 ident: B54 article-title: ChemCalc: a building block for tomorrow’s chemical infrastructure publication-title: J Chem Inf Model doi: 10.1021/ci300563h – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: B49 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 349 start-page: 1254766 year: 2015 ident: B1 article-title: Small molecules from the human microbiota publication-title: Science doi: 10.1126/science.1254766 – volume: 17 start-page: 420 year: 2016 ident: B15 article-title: FMAP: Functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1278-0 – volume: 3 start-page: 337 year: 2018 end-page: 346 ident: B25 article-title: Dynamics of metatranscription in the inflammatory bowel disease gut microbiome publication-title: Nat Microbiol doi: 10.1038/s41564-017-0089-z – volume: 96 start-page: 807 year: 2017 end-page: 814 ident: B29 article-title: Targeting of Streptococcus mutans biofilms by a novel small molecule prevents dental caries and preserves the oral microbiome publication-title: J Dent Res doi: 10.1177/0022034517698096 – volume: 38 start-page: 23 year: 2020 end-page: 26 ident: B37 article-title: Mass spectrometry searches using MASST publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0375-9 – volume: 47 start-page: D1102 year: 2019 end-page: D1109 ident: B55 article-title: PubChem 2019 update: improved access to chemical data publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1033 – volume: 192 start-page: 5002 year: 2010 end-page: 5017 ident: B28 article-title: The human oral microbiome publication-title: J Bacteriol doi: 10.1128/JB.00542-10 – volume: 8 start-page: 290 year: 2010 end-page: 295 ident: B5 article-title: Ethanolamine utilization in bacterial pathogens: roles and regulation publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2334 – volume: 9 year: 2018 ident: B41 article-title: Gut microbial glycerol metabolism as an endogenous acrolein publication-title: mBio doi: 10.1128/mBio.01947-17 – volume: 46 start-page: D633 year: 2018 end-page: D639 ident: B18 article-title: The MetaCyc database of metabolic pathways and enzymes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx935 – volume: 17 start-page: 905 year: 2020 end-page: 908 ident: B53 article-title: Feature-based molecular networking in the GNPS analysis environment publication-title: Nat Methods doi: 10.1038/s41592-020-0933-6 – ident: B11 article-title: Pascal Andreu V , Augustijn HE , Chen L , Zhernakova A , Fu J , Fischbach MA , Dodd D , Medema MH . 2021 . A systematic analysis of metabolic pathways in the human gut microbiota . bioRxiv 2021.02.25.432841 . doi: 10.1101/2021.02.25.432841 . – volume: 6 start-page: 37479 year: 2016 ident: B46 article-title: Genome mining unveils widespread natural product biosynthetic capacity in human oral microbe Streptococcus mutans publication-title: Sci Rep doi: 10.1038/srep37479 – volume: 17 start-page: 478 year: 2012 end-page: 486 ident: B2 article-title: The rhizosphere microbiome and plant health publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2012.04.001 – volume: 34 start-page: 828 year: 2016 end-page: 837 ident: B35 article-title: Perspective Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking publication-title: Nat Biotechnol doi: 10.1038/nbt.3597 – volume: 10 year: 2019 ident: B31 article-title: Identification of the bacterial biosynthetic gene clusters of the oral microbiome illuminates the unexplored social language of bacteria during health and disease publication-title: mBio doi: 10.1128/mBio.00321-19 – volume: 279 start-page: 70 year: 2017 end-page: 89 ident: B4 article-title: Gut microbiota: role in pathogen colonization, immune responses and inflammatory disease publication-title: Immunol Rev doi: 10.1111/imr.12567 – volume: 8 start-page: 15 year: 2010 end-page: 25 ident: B3 article-title: Bacterial competition: surviving and thriving in the microbial jungle publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2259 – volume: 39 start-page: W339 year: 2011 end-page: W346 ident: B47 article-title: AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr466 – volume: 16 start-page: 60 year: 2020 end-page: 68 ident: B19 article-title: A computational framework to explore large-scale biosynthetic diversity publication-title: Nat Chem Biol doi: 10.1038/s41589-019-0400-9 – volume: 10 start-page: 3665 year: 2019 ident: B57 article-title: An anaerobic bacterium host system for heterologous expression of natural product biosynthetic gene clusters publication-title: Nat Commun doi: 10.1038/s41467-019-11673-0 – volume: 75 start-page: 3977 year: 2018 end-page: 3990 ident: B8 article-title: Implication of gut microbiota metabolites in cardiovascular and metabolic diseases publication-title: Cell Mol Life Sci doi: 10.1007/s00018-018-2901-1 – volume: 6 start-page: 225 year: 2005 ident: B36 article-title: Pathway level analysis of gene expression using singular value decomposition publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-225 – volume: 26 start-page: 841 year: 2010 end-page: 842 ident: B50 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 30 start-page: 1218 year: 2013 end-page: 1223 ident: B56 article-title: Detecting sequence homology at the gene cluster level with multigeneblast publication-title: Mol Biol Evol doi: 10.1093/molbev/mst025 – volume: 332 start-page: 1097 year: 2011 end-page: 1100 ident: B7 article-title: Deciphering the rhizosphere microbiome for disease-suppressive bacteria publication-title: Science doi: 10.1126/science.1203980 – volume: 17 start-page: 132 year: 2016 end-page: 114 ident: B20 article-title: Mash: fast genome and metagenome distance estimation using MinHash publication-title: Genome Biol doi: 10.1186/s13059-016-0997-x – volume: 95 start-page: 219 year: 2004 end-page: 223 ident: B43 article-title: Lactobacillus reuteri in bovine milk fermented decreases the oral carriage of mutans streptococci publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2004.03.006 – volume: 23 start-page: 122 year: 2019 end-page: 128 ident: B26 article-title: Oral microbiome: unveiling the fundamentals publication-title: J Oral Maxillofac Pathol doi: 10.4103/jomfp.JOMFP_304_18 – volume: 41 start-page: 417 year: 2017 end-page: 429 ident: B6 article-title: Mining prokaryotes for antimicrobial compounds: from diversity to function publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fux014 – volume: 6 start-page: 563 year: 2020 end-page: 571 ident: B33 article-title: Cariogenic Streptococcus mutans produces tetramic acid strain-specific antibiotics that impair commensal colonization publication-title: ACS Infect Dis doi: 10.1021/acsinfecdis.9b00365 – volume: 1 start-page: 7 year: 2012 ident: B23 article-title: The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome publication-title: Gigascience doi: 10.1186/2047-217X-1-7 – volume: 108 start-page: 685 year: 2015 end-page: 693 ident: B48 article-title: Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-015-0524-1 – volume: 47 year: 2019 ident: B12 article-title: A deep learning genome-mining strategy for biosynthetic gene cluster prediction publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz654 – volume: 22 start-page: 145 year: 1984 end-page: 158 ident: B42 article-title: Acrolein polymerization: monodisperse, homo, and hybrido microspheres, synthesis, mechanism, and reactions publication-title: J Polym Sci Polym Chem Ed doi: 10.1002/pol.1984.170220115 – volume: 37 start-page: 179 year: 2019 end-page: 187 ident: B24 article-title: 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses publication-title: Nat Biotechnol doi: 10.1038/s41587-018-0008-8 – volume: 5 start-page: S9 year: 2011 end-page: S12 ident: B14 article-title: MetaPath: identifying differentially abundant metabolic pathways in metagenomic datasets publication-title: BMC Proc doi: 10.1186/1753-6561-5-S2-S9 – ident: B34 article-title: McLuskey K , Wandy J , Vincent I , van der Hooft JJJ , Rogers S , Burgess K , Daly R . 2020 . Decomposing metabolite set activity levels with PALS . bioRxiv 2020.06.07.138974 . doi: 10.1101/2020.06.07.138974 . – volume: 32 start-page: 2847 year: 2016 end-page: 2849 ident: B52 article-title: Complex heatmaps reveal patterns and correlations in multidimensional genomic data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw313 – volume: 49 start-page: 193 year: 2011 end-page: 199 ident: B44 article-title: Inhibitory effect of Lactobacillus reuteri on periodontopathic and cariogenic bacteria publication-title: J Microbiol doi: 10.1007/s12275-011-0252-9 – volume: 10 start-page: 1200 year: 2013 end-page: 1202 ident: B22 article-title: Differential abundance analysis for microbial marker-gene surveys publication-title: Nat Methods doi: 10.1038/nmeth.2658 – volume: 30 start-page: 2808 year: 2014 end-page: 2810 ident: B45 article-title: Sushi.R: flexible, quantitative and integrative genomic visualizations for publication-quality multi-panel figures publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu379 – volume: 47 start-page: W81 year: 2019 end-page: W87 ident: B10 article-title: antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz310 – volume: 40 start-page: D109 year: 2012 end-page: D114 ident: B17 article-title: KEGG for integration and interpretation of large-scale molecular data sets publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr988 – volume: 15 start-page: 151 year: 2008 end-page: 161 ident: B39 article-title: Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production publication-title: DNA Res doi: 10.1093/dnares/dsn009 – volume: 52 start-page: 7 year: 2008 end-page: 25 ident: B40 article-title: Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.200700412 – volume: 98 start-page: 148 year: 2019 end-page: 156 ident: B27 article-title: The oral microbiota is modified by systemic diseases publication-title: J Dent Res doi: 10.1177/0022034518805739 – volume: 2 year: 2017 ident: B30 article-title: Metabolic fingerprints from the human oral microbiome reveal a vast knowledge gap of secreted small peptidic molecules publication-title: mSystems doi: 10.1128/mSystems.00058-17 – volume: 366 year: 2019 ident: B32 article-title: A metagenomic strategy for harnessing the chemical repertoire of the human microbiome publication-title: Science doi: 10.1126/science.aax9176 – volume: 6 start-page: 36246 year: 2016 ident: B38 article-title: Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin publication-title: Mol Nutr Food Res doi: 10.1038/srep36246 – volume: 174 start-page: 785 year: 2018 end-page: 790 ident: B9 article-title: Microbiome: focus on causation and mechanism publication-title: Cell doi: 10.1016/j.cell.2018.07.038 – volume: 6 start-page: 26447 year: 2016 ident: B16 article-title: MetaTrans: an open-source pipeline for metatranscriptomics publication-title: Sci Rep doi: 10.1038/srep26447 – volume: 40 year: 2012 ident: B51 article-title: Grinder: a versatile amplicon and shotgun sequence simulator publication-title: Nucleic Acids Res doi: 10.1093/nar/gks251 – volume: 9 start-page: 357 year: 2012 end-page: 360 ident: B21 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 15 start-page: 962 year: 2018 end-page: 968 ident: B13 article-title: Species-level functional profiling of metagenomes and metatranscriptomes publication-title: Nat Methods doi: 10.1038/s41592-018-0176-y |
SSID | ssj0001637129 |
Score | 2.1594737 |
Snippet | Microbial gene clusters encoding the biosynthesis of primary and secondary metabolites play key roles in shaping microbial ecosystems and driving... Microbes play an increasingly recognized role in determining host-associated phenotypes by producing small molecules that interact with other microorganisms or... |
SourceID | doaj asm2 |
SourceType | Open Website Aggregation Database |
SubjectTerms | Computational Biology Methods and Protocols |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7iIngRn_gmB8FTtHn05a2Kuiire3DBW0iTCRbcrri7oP_eTNtVBA9eW5rA93U6M83MN4ScoGoTcGWZMJFiykUpy8EqxlOP-YFzNsZ-58FD0h-pu-f4eYkki16YDsHpmZmOm4P8b8sW2fm4VTeenmEenjLsH-_FIlfBIHtFMXq8__m7ksg0eLLuGPPPZ8M3OOwhfmn1N07lZp2sddEgLVr6NsgS1JtkpZ0P-blFXi6rWzYohhfU1LSYzyYhvARHh9UbdpEDfZrQYTtzmw5gFuh8rSxFIWl69TpHBQRalNjpEYgNKzh6_dGVvda0qumgakWYxjDdJqOb66erPutGIzATAiLDvA-e23hjRe4yC1YqlXOTWFTw4iqEcKJMpCxLyCRIX6aOQx7YwGwrhsxlcocs15Madgn1uQenTFjKSYX3MqOcjHxSotRLlO-RU8RJL5jRTdogMr1AVDeIasH3yCVCqd9anQyNytXNhcCj7gxBxzEkieUiApUqm3sDKLCTlsZ6brg0-__e7oCsCiwwaSrrDsny7H0ORyFCmJXH3evwBedsubE priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1La8MwDMfNKAx2GXuy7oUPg528xrHz2q0t7cqgo4cWejOOLbNAm5Y1he3bz0py2E677JqACPqbSEqknwh5QGoTcGlYqAPJpA0SloGRjCcO6wNrTYTzztO3eLKQr8to-WPVF_aENXjgxnG9KII4NjwMQCbSZE4DAlmSXBvHNRd1auRj3o9iqv66EovER7L2N6Z_B_fWLQH8CWv4hCEbtKN36_AXq78OKuMTctxmg7TfPMUpOYDyjBw2-yG_zsn7oHhh0_7smeqS9vfVxqeXYOms2OIUOdD5hs6andt0CpWXc1UYiiBpOlztkYBA-zlOenhhvQVLR59t22tJi5JOiwbCtIbdBVmMR_PhhLWrEZj2CZFmzvnIrZ02YWZTA0ZImXEdGyR4celTuDCPhchzSAUIlyeWQ-bVwGorgtSm4pJ0yk0JV4S6zIGV2puyQuK9VEsrAhfniHoJsi55RD-p9mzvVF02hKlaN6zpnao9qkLeJQN0pdo2nAyF5Or6gtdTtXqqv_S8_g8jN-QoxN6TuunulnSqjz3c-eShyu_rc_INPVXCSg priority: 102 providerName: Directory of Open Access Journals |
Title | BiG-MAP: an Automated Pipeline To Profile Metabolic Gene Cluster Abundance and Expression in Microbiomes |
URI | https://journals.asm.org/doi/10.1128/msystems.00937-21 https://doaj.org/article/55e66c120e474c9fae27347bacf1a13a |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVLQqCX0qYpTdouOgR6UmJZ8lehBG_YNCR4s4Qs5CZkaZQYdr3b_YDdfx-N7RwCOfZksLEOM5bnPXvmPUJOUbUJuDQs1IFk0gYJy8BIxhOH_MBaE-G8czGKryfy5jF67JFXe6sugKt3qR36SU2W07Ptv92F3_B_2gGY9HzWiXufIT1PGI6V7_vClKChQdGh_eaTSywSX966f5vv3ulfzHo1C98I-DeV5uoT-dhBRJq3Of1MelAfkoPWNHL3hTwPqr-syMe_qa5pvlnPPeYES8fVAkfLgT7M6bg14qYFrH2Op5WhqC5NL6cblEWgeYnjHz7bfgVLh9uuF7amVU2LqlVmmsHqiEyuhg-X16zzS2DaoyTNnPPlXDttwsymBoyQMuM6NijrxaXHdWEZC1GWkAoQrkwsh8ynCClYBKlNxVeyV89r-EaoyxxYqf1SVki8lmppReDiEvVfguyY_MI4qdd8qYZLhKmatQLUK9VEVIX8mAwwlGrRimcolLNuTsyXT6rbHSqKII4NDwOQiTSZ04CqO0mpjeOaC33yPxb5Tj6E2JDSdOL9IHvr5QZ-ekSxLvtkP88nd7f-OBiOxvf9hpn3m6fnBQWIz0M |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT9wwEICtClSVCyqliEehPiBxMo1j59VbQMC2ENjDrsTNcuyxCNrNIrIr0X9fT2JUVeLANVFsacbOzNgz3xByjNQm4NKwWEeSSRtlrAAjGc8cxgfWmgTrnavbdDSVv--T-5BVibUwj9iXd9ad6m7e3-PjxsaD6NCPMP8xHwjH3SnG4hnDGvJ1vDv0gdd6WU7vrv-dsKQi89YsXGW--a3_D_uJ4v94_b1hufxMNoNHSMtBhVvkA7RfyMehR-SfbfJw1lyxqhz_pLql5Wq58C4mWDpunrCSHOhkQcdD321awdKrdNYYijBpej5bIQWBljVWe3jl-hEsvXgJqa8tbVpaNQOIaQ7dVzK9vJicj1hoj8C0d4o0c85bb-20iQubGzBCyoLr1CDFi0vvxsV1KkRdQy5AuDqzHAqvEYy4EshtLnbIWrtoYZdQVziwUvuhrJD4LtfSisilNeJeomKPnKCcVFjfnepDhzhXrxJVvURVzPfIGYpSPQ2sDIX06v6BV6YKm0ElCaSp4XEEMpOmcBoQspPV2jiuudD7757uO_k0mlQ36ubX7fUB2Ygx4aTPtPtG1pbPKzj0HsOyPgpL4y9xHL4U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELZQK9BeEBtMA8bwwySezOLY-bW3wOgKrNCHVuqb5dhnEYmmFW0l9t_jS4zQpD3wmii29H1x7i539x0h31G1Cbg0LNaRZNJGGSvASMYzh_GBtSbBfufRXTqcyptZMgtVldgLExBcnevVvE3k48leWhfmEeY_5p3C8eocY_GMYQ95v01W9Ui_LKf3t29_WFKReWsWUpn_fdZ_h_0-8T96_a1hGeyR3eAR0rKj8CPZguYT2e5mRP7dJw8X9W82Ksc_qW5ouVkvvIsJlo7rJXaSA50s6Libu01HsPaUPtaGopg0vXzcoAoCLSvs9vDk-hUsvXoOpa8NrRs6qjshpjmsDsh0cDW5HLIwHoFp7xRp5py33tppExc2N2CElAXXqUEVLy69GxdXqRBVBbkA4arMcig8IxhxJZDbXHwmvWbRwBdCXeHASu2XskLivVxLKyKXVij3EhWH5AxxUq_sqDZ0iHP1iqhqEVUxPyQXCKVadloZCtWr2wueSxUOg0oSSFPD4whkJk3hNKDITlZp47jmQh-9e7tTsjP-NVB_ru9uj8mHGOtN2kK7r6S3ftrAiXcY1tW38Ga8AJ1pvbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BiG-MAP%3A+an+Automated+Pipeline+To+Profile+Metabolic+Gene+Cluster+Abundance+and+Expression+in+Microbiomes&rft.jtitle=mSystems&rft.au=Vict%C3%B3ria+Pascal+Andreu&rft.au=Hannah+E.+Augustijn&rft.au=Koen+van+den+Berg&rft.au=Justin+J.+J.+van+der+Hooft&rft.date=2021-10-01&rft.pub=American+Society+for+Microbiology&rft.eissn=2379-5077&rft.volume=6&rft.issue=5&rft_id=info:doi/10.1128%2FmSystems.00937-21&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_55e66c120e474c9fae27347bacf1a13a |