Medical Image Computing and Computer Assisted Intervention - MICCAI 2021 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part I

The eight-volume set LNCS 12901, 12902, 12903, 12904, 12905, 12906, 12907, and 12908 constitutes the refereed proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, held in Strasbourg, France, in September/October 2021.*The 542 re...

Full description

Saved in:
Bibliographic Details
Main Authors de Bruijne, Marleen, Cattin, Philippe C, Cotin, Stéphane, Padoy, Nicolas, Speidel, Stefanie, Zheng, Yefeng, Essert, Caroline
Format eBook Conference Proceeding Book
LanguageEnglish
Published Cham Springer International Publishing AG 2021
Springer International Publishing
Springer Nature
Edition1
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • 3.4 Objective Function for Learning the Segmentation Network
  • References -- Multi-task, Multi-domain Deep Segmentation with Shared Representations and Contrastive Regularization for Sparse Pediatric Datasets -- 1 Introduction -- 2 Method -- 2.1 Deep Segmentation Model with Domain-Specific Layers (DSL) -- 2.2 Supervised Contrastive Regularization -- 3 Experiments -- 3.1 Imaging Datasets -- 3.2 Implementation Details -- 3.3 Evaluation of Predicted Segmentation -- 4 Results and Discussion -- 4.1 Segmentation Results -- 4.2 Supervised Contrastive Regularization Visualization -- 5 Conclusion -- References -- TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee Topology Preservation in Segmentations -- 1 Introduction -- 2 Method -- 2.1 Experimental Setup -- 3 Results and Discussion -- 4 Conclusion -- References -- Learning Consistency- and Discrepancy-Context for 2D Organ Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Consistency Context-Based Organ Segmentation -- 2.2 Segmentation Refinement with Discrepancy Context Knowledge -- 3 Datasets and Implementation Details -- 4 Experimental Results and Analysis -- 4.1 The Effectiveness of Our Proposed Method -- 4.2 Portability with Different Segmentation Models -- 4.3 Qualitative Results -- 5 Conclusion -- References -- Partially-Supervised Learning for Vessel Segmentation in Ocular Images -- 1 Introduction -- 2 Method -- 2.1 Partially-Supervised Learning -- 2.2 Active Learning Framework -- 2.3 Latent MixUp -- 2.4 Loss Function -- 3 Experiment -- 3.1 Experiment Setting -- 3.2 Performance Comparison -- 3.3 Ablation Studies -- 4 Conclusion -- References -- Unsupervised Network Learning for Cell Segmentation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Formulation of the Unsupervised Segmentation Problem -- 3.2 USAR for Unsupervised Segmentation Network Learning -- 3.3 Avoid Trivial Solutions in Unsupervised Network Learning
  • 3.5 Ablation Study -- 4 Discussion -- 5 Conclusion -- References -- Patch-Free 3D Medical Image Segmentation Driven by Super-Resolution Technique and Self-Supervised Guidance -- 1 Introduction -- 2 Methodology -- 2.1 Multi-task Learning -- 2.2 Self-Supervised Guidance Module -- 2.3 Task-Fusion Module -- 2.4 Overall Objective Function -- 3 Experiments -- 3.1 Datasets -- 3.2 Implementation Details -- 3.3 Ablation Study -- 3.4 Experimental Results -- 4 Conclusion -- References -- Progressively Normalized Self-Attention Network for Video Polyp Segmentation -- 1 Introduction -- 2 Method -- 2.1 Normalized Self-attention (NS) -- 2.2 Progressive Learning Strategy -- 3 Experiments -- 3.1 Implementation Details -- 3.2 Evaluation on Video Polyp Segmentation -- 3.3 Ablation Study -- 4 Conclusion -- References -- SGNet: Structure-Aware Graph-Based Network for Airway Semantic Segmentation -- 1 Introduction -- 2 Method -- 2.1 Multi-task U-Net Module -- 2.2 Structure-Aware Graph Convolutional Network -- 2.3 Loss Functions and Training Methodology -- 3 Experiments and Results -- 3.1 Datasets and Implementation Details -- 3.2 Results -- 4 Conclusion -- References -- NucMM Dataset: 3D Neuronal Nuclei Instance Segmentation at Sub-Cubic Millimeter Scale -- 1 Introduction -- 1.1 Related Works -- 2 NucMM Dataset -- 3 Method -- 3.1 Hybrid-Representation Learning -- 3.2 Instance Decoding -- 3.3 Implementation -- 4 Experiments -- 4.1 Methods in Comparison -- 4.2 Benchmark Results on the NucMM Dataset -- 4.3 Sensitivity of the Decoding Parameters -- 5 Conclusion -- References -- AxonEM Dataset: 3D Axon Instance Segmentation of Brain Cortical Regions -- 1 Introduction -- 1.1 Related Works -- 2 AxonEM Dataset -- 2.1 Dataset Description -- 2.2 Dataset Annotation -- 2.3 Dataset Analysis -- 3 Methods -- 3.1 Task and Evaluation Metric -- 3.2 State-of-the-Art Methods -- 4 Experiments
  • Intro -- Preface -- Organization -- Contents - Part I -- Image Segmentation -- Noisy Labels are Treasure: Mean-Teacher-Assisted Confident Learning for Hepatic Vessel Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Materials -- 2.2 Hepatic CT Preprocessing -- 2.3 Mean-Teacher-assisted Confident Learning Framework -- 2.4 Loss Function -- 3 Experiments and Results -- 4 Conclusion -- References -- TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation -- 1 Introduction -- 2 Proposed Method -- 3 Experiments and Results -- 4 Conclusion -- References -- Pancreas CT Segmentation by Predictive Phenotyping -- 1 Introduction -- 2 Method -- 2.1 Problem Formulation -- 2.2 Loss Functions -- 2.3 Phenotype Embedding -- 3 Experiments -- 3.1 Dataset -- 3.2 Implementation Details -- 3.3 Comparison with State-of-the-Arts -- 3.4 Results -- 4 Discussion and Conclusion -- References -- Medical Transformer: Gated Axial-Attention for Medical Image Segmentation -- 1 Introduction -- 2 Medical Transformer (MedT) -- 2.1 Self-attention Overview -- 2.2 Gated Axial-Attention -- 2.3 Local-Global Training -- 3 Experiments and Results -- 3.1 Dataset Details -- 3.2 Implementation Details -- 3.3 Results -- 4 Conclusion -- References -- Anatomy-Constrained Contrastive Learning for Synthetic Segmentation Without Ground-Truth -- 1 Introduction -- 2 Methods -- 3 Experimental Results -- 4 Discussion and Conclusion -- References -- Study Group Learning: Improving Retinal Vessel Segmentation Trained with Noisy Labels -- 1 Introduction -- 2 Methodology -- 2.1 Model Structure -- 2.2 Study Group Learning (SGL) Scheme -- 2.3 Vessel Label Erasing -- 3 Experiments -- 3.1 Dataset and Implementation -- 3.2 Learned Retinal Image Enhancement -- 3.3 Study Group Learning -- 4 Conclusions -- References
  • Multi-phase Liver Tumor Segmentation with Spatial Aggregation and Uncertain Region Inpainting -- 1 Introduction -- 2 Method -- 2.1 Spatial Aggregation Module -- 2.2 Uncertain Region Inpainting Module -- 2.3 Loss Function and Training Strategy -- 3 Materials and Experiments -- 4 Discussion and Conclusions -- References -- Convolution-Free Medical Image Segmentation Using Transformers -- 1 Introduction -- 2 Materials and Methods -- 2.1 Proposed Network -- 2.2 Implementation -- 3 Results and Discussion -- 4 Conclusions -- References -- Consistent Segmentation of Longitudinal Brain MR Images with Spatio-Temporal Constrained Networks -- 1 Introduction -- 2 Method -- 2.1 Dataset -- 2.2 Spatio-Temporal Constrained Deep Learning Model -- 2.3 Initial ROI Segmentation with Supervised Learning -- 2.4 Consistent Segmentation with Semi-supervised Learning -- 2.5 Implement Details -- 3 Experiments and Results -- 4 Conclusion -- References -- A Multi-branch Hybrid Transformer Network for Corneal Endothelial Cell Segmentation -- 1 Introduction -- 2 Method -- 2.1 Residual Transformer Block -- 2.2 The Body, Edge, and Final Branches -- 2.3 Loss Function -- 3 Experiments -- 3.1 Datasets and implementation Details -- 3.2 Comparison with SOTA methods -- 3.3 Ablation Study -- 4 Conclusion -- References -- TransBTS: Multimodal Brain Tumor Segmentation Using Transformer -- 1 Introduction -- 2 Method -- 2.1 Overall Architecture of TransBTS -- 2.2 Network Encoder -- 2.3 Network Decoder -- 3 Experiments -- 3.1 Main Results -- 3.2 Model Complexity -- 3.3 Ablation Study -- 4 Conclusion -- References -- Automatic Polyp Segmentation via Multi-scale Subtraction Network -- 1 Introduction -- 2 Method -- 2.1 Multi-scale Subtraction Module -- 2.2 LossNet -- 3 Experiments -- 3.1 Datasets -- 3.2 Evaluation Metrics -- 3.3 Implementation Details -- 3.4 Comparisons with State-of-the-art
  • 4.1 Implementation Details -- 4.2 Benchmark Results on SNEMI3D Dataset -- 4.3 Benchmark Results on AxonEM Dataset -- 5 Conclusion -- References -- Improved Brain Lesion Segmentation with Anatomical Priors from Healthy Subjects -- 1 Introduction -- 2 Method -- 2.1 Problem Formulation -- 2.2 Intensity-Based Strategy -- 2.3 Distribution-Based Strategy -- 2.4 Integration with CNNs and Implementation Details -- 3 Results -- 3.1 Dataset Description -- 3.2 Experimental Settings -- 3.3 Segmentation Performance -- 4 Conclusion -- References -- CarveMix: A Simple Data Augmentation Method for Brain Lesion Segmentation -- 1 Introduction -- 2 Method -- 2.1 Problem Formulation -- 2.2 CarveMix -- 2.3 Relationship with Mixup and CutMix -- 2.4 Implementation Details -- 3 Experiments -- 3.1 Data Description -- 3.2 Evaluation Results -- 4 Conclusion -- References -- Boundary-Aware Transformers for Skin Lesion Segmentation -- 1 Introduction -- 2 Method -- 2.1 Basic Transformer for Segmentation -- 2.2 Boundary-Aware Transformer -- 2.3 Objective Function -- 3 Experimental Results -- 3.1 Datasets -- 3.2 Implementation Details -- 3.3 Comparison with State-of-the-Arts -- 3.4 Ablation Study -- 4 Conclusion -- References -- A Topological-Attention ConvLSTM Network and Its Application to EM Images -- 1 Introduction -- 2 Related Works -- 3 Method -- 3.1 Spatial Topological-Attention (STA) Module -- 3.2 Iterative Topological-Attention (ITA) Module -- 4 Experiments -- 5 Conclusion -- References -- BiX-NAS: Searching Efficient Bi-directional Architecture for Medical Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 BiO-Net++: A Multi-scale Upgrade of BiO-Net -- 2.2 BiX-NAS: Hierarchical Search for Efficient BiO-Net++ -- 2.3 Analysis of Searching Fairness and Deficiency -- 3 Experiments -- 3.1 Datasets and Implementation Details -- 3.2 Experimental Results -- 4 Conclusion