Pattern Recognition and Image Analysis 9th Iberian Conference, IbPRIA 2019, Madrid, Spain, July 1-4, 2019, Proceedings, Part I

Saved in:
Bibliographic Details
Main Authors Morales, Aythami, Fierrez, Julian, Sánchez, José Salvador, Ribeiro, Bernardete
Format eBook
LanguageEnglish
Published Cham Springer International Publishing AG 2019
Edition1
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • Intro -- Preface -- Organization -- Abstracts of Invited Tutorials -- Machine Learning with Scikit-Learn -- Computer Vision for Affective Computing -- Bayesian Optimization -- Abstracts of Invited Talks -- Building Computer Vision Systems that Really Work -- Face Analysis for Multimodal Emotional Interfaces -- Fun with Human-Machine Collaboration for Computer Vision -- Towards Human Behavior Modeling from (Big) Mobile Data -- Contents -- Part I -- Contents -- Part II -- Best Ranked Papers -- Towards a Joint Approach to Produce Decisions and Explanations Using CNNs -- 1 Introduction -- 2 Methodology -- 2.1 Proposed Architecture -- 2.2 Synthetic Dataset -- 2.3 Experiments -- 2.4 Experiments on Real Datasets -- 3 Results and Discussion -- 4 Conclusion -- References -- Interactive-Predictive Neural Multimodal Systems -- 1 Introduction -- 2 Interactive-Predictive Multimodal Pattern Recognition -- 2.1 Neural Architectures for Multimodal Sequence to Sequence Learning -- 2.2 Interactive-Predictive Pattern Recognition -- 2.3 Evaluation Metrics -- 2.4 Usage of the System and User Simulation -- 2.5 Description of the Systems -- 3 Results and Discussion -- 3.1 Quantitative Evaluation -- 3.2 Qualitative Analysis and Discussion -- 4 Related Work -- 5 Conclusions and Future Work -- References -- Uncertainty Estimation for Black-Box Classification Models: A Use Case for Sentiment Analysis -- 1 Introduction -- 2 Related Work -- 2.1 Uncertainty in Deep Learning -- 2.2 Rejection Methods -- 3 Uncertainty Measures from Black-Box Models -- 3.1 A Wrapper for Computing Aleatoric Heteroscedastic Uncertainty -- 3.2 Uncertainty Heuristics -- 4 Use Case and Results -- 5 Conclusions -- References -- Impact of Ultrasound Image Reconstruction Method on Breast Lesion Classification with Deep Learning -- 1 Introduction -- 2 Materials and Methods -- 2.1 Dataset
  • 5.2 Performance Evaluation -- 6 Conclusion -- References -- Pattern Recognition -- Description and Recognition of Activity Patterns Using Sparse Vector Fields -- 1 Introduction -- 2 Estimation of Multiple Vector Fields -- 3 Activity Pattern Labeling -- 4 Experimental Results -- 4.1 Synthetic Data -- 4.2 Real Data -- 5 Conclusion -- References -- Instance Selection for the Nearest Neighbor Classifier: Connecting the Performance to the Underlying Data Structure -- 1 Introduction -- 2 Categorization of Sample Types -- 3 Databases and Experimental Setting -- 4 Results and Discussion -- 5 Concluding Remarks -- References -- Modified DBSCAN Algorithm for Microscopic Image Analysis of Wood -- 1 Introduction -- 2 Materials and Methods -- 2.1 Wood Anatomy Database -- 2.2 Segmentation of Ray Cells -- 2.3 DBSCAN -- 2.4 Ray Width -- 2.5 Evaluation -- 3 Results -- 4 Conclusion -- References -- Automatic Detection of Tuberculosis Bacilli from Microscopic Sputum Smear Images Using Faster R-CNN, Transfer Learning and Augmentation -- Abstract -- 1 Introduction -- 2 Proposed Approach -- 3 Experimental Results -- 4 Conclusions -- Acknowledgement -- References -- Detection of Stone Circles in Periglacial Regions of Antarctica in UAV Datasets -- 1 Introduction -- 2 Data Acquisition -- 3 Detection Methods -- 3.1 Template Matching -- 3.2 Watershed -- 3.3 Sliding Band Filter -- 4 Results -- 4.1 Performance Measure -- 4.2 Statistical Evaluation -- 5 Conclusions -- References -- Lesion Detection in Breast Ultrasound Images Using a Machine Learning Approach and Genetic Optimization -- Abstract -- 1 Introduction -- 1.1 Modeling Lesions in Breast Ultrasound Images -- 1.2 Lesion Detection in Breast Ultrasound Images -- 1.3 Optimization of Machine Learning Methods with Genetic Algorithms -- 2 Materials and Methods -- 2.1 Dataset -- 2.2 Random Forest -- 2.3 Genetic Algorithms
  • Model Based Recursive Partitioning for Customized Price Optimization Analytics -- 1 Introduction -- 2 The Decision Tree Modeling Approach -- 2.1 CART Algorithm -- 2.2 CTREE Algorithm -- 2.3 Model Based Recursive Partitioning -- 3 The MOB Method for Pricing Analytics -- 4 Business Case Application -- 4.1 Data Description -- 4.2 MOB Modeling -- 4.3 Logistic Regression Modeling -- 4.4 Optimization and Revenue Results -- 5 Summary and Concluding Remarks -- References -- 3D Reconstruction of Archaeological Pottery from Its Point Cloud -- Abstract -- 1 Introduction -- 2 Related Work -- 3 Data Acquisition -- 3.1 Calibration -- 3.2 Scanning the Pottery -- 4 The Registration Process -- 4.1 Data Pre-processing -- 4.2 Features Extraction -- 4.3 Correspondence Matching -- 4.4 Global Registration -- 5 Discussion -- 6 Conclusion -- Acknowledgement -- References -- Geometric Interpretation of CNNs' Last Layer -- 1 Introduction -- 2 Background -- 2.1 Geometric Interpretation -- 3 Experiments and Results -- 3.1 Balanced Dataset -- 3.2 Unbalanced Dataset -- 4 Conclusions and Future Work -- References -- Re-Weighted 1 Algorithms within the Lagrange Duality Framework -- 1 Introduction -- 2 Methodology with Oracle -- 3 Solutions of the Dual Problem -- 4 RW1 with Projected Subgradient Algorithm -- 5 Methodology and Algorithm Without Oracle -- 6 Problem with Noise -- 7 Experimental Results -- 7.1 Results for the Noise-Free Setting -- 7.2 Results for the Noisy Setting -- 8 Conclusions -- References -- A Note on Gradient-Based Intensity Normalization -- Abstract -- 1 Introduction -- 2 Review -- 3 Material -- 4 Methodology -- 5 Results -- 6 Conclusions -- Acknowledgements -- References -- Blind Robust 3-D Mesh Watermarking Based on Mesh Saliency and QIM Quantization for Copyright Protection -- 1 Introduction -- 2 Background -- 2.1 3-D Mesh Saliency
  • 2.4 Proposed Method
  • 2.2 Ultrasound Image Reconstruction -- 2.3 Transfer Learning with Convolutional Neural Networks -- 2.4 Experiments and Evaluation -- 3 Results -- 4 Discussion -- 5 Conclusions -- References -- Segmentation of Cell Nuclei in Fluorescence Microscopy Images Using Deep Learning -- 1 Introduction -- 2 Proposed Approach -- 3 Experiments -- 3.1 Data -- 3.2 Training -- 3.3 Evaluation Criteria -- 3.4 Performance Comparison -- 4 Results -- 4.1 Nuclei Segmentation -- 4.2 F1 Score vs IoU Threshold -- 4.3 Computational Efficiency -- 5 Conclusions and Future Work -- References -- Food Recognition by Integrating Local and Flat Classifiers -- 1 Introduction -- 2 Proposed Method -- 2.1 Model Setup -- 2.2 Epistemic Uncertainty -- 2.3 Prediction by Integrating Local and Flat Classifiers -- 3 Experiments -- 3.1 Dataset -- 3.2 Metric -- 3.3 Experimental Setup -- 3.4 Results -- 4 Conclusions -- References -- Machine Learning -- Combining Online Clustering and Rank Pooling Dynamics for Action Proposals -- 1 Introduction -- 2 Related Work -- 3 Action Proposals Generation -- 3.1 Feature Extraction -- 3.2 Online Clustering for Action Proposals -- 3.3 Filtering Proposals -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Comparison with the State of the Art -- 4.3 Ablation Study -- 5 Conclusion -- References -- On the Direction Guidance in Structure Tensor Total Variation Based Denoising -- 1 Introduction -- 2 Background -- 3 Method -- 4 Experimental Results -- 5 Conclusion and Future Work -- References -- Impact of Fused Visible-Infrared Video Streams on Visual Tracking -- 1 Introduction -- 2 Visual Trackers and Fusion -- 2.1 Reference Trackers -- 2.2 Fusion Strategies -- 3 Evaluation -- 3.1 Data Set to Subsets -- 3.2 Evaluation Metrics -- 3.3 Evaluation on Subsets -- 3.4 Fused Subsets Versus Domain Subsets -- 3.5 Special Case Analysis -- 4 Conclusion -- References
  • 2.2 Quantization Index Modulation -- 3 The Proposed Method -- 3.1 Watermark Embedding -- 3.2 Watermark Extraction -- 4 Experimental Results -- 4.1 Experimental Setup -- 4.2 Results Discussion -- 4.3 Comparison with Alternative Methods -- 5 Conclusion -- References -- Using Copies to Remove Sensitive Data: A Case Study on Fair Superhero Alignment Prediction -- 1 Introduction -- 2 Case Study -- 3 Methodological Proposal -- 3.1 Copying Machine Learning Classifiers -- 3.2 Using Copies to Remove Sensitive Data -- 4 Experiments -- 5 Discussion of Results -- 6 Conclusions and Future Work -- References -- Weighted Multisource Tradaboost -- 1 Introduction -- 2 Transfer Learning -- 3 State-of-the-Art -- 3.1 Multi-KT - Support Vector Machines svm -- 3.2 Transfer Learning Decision Forests (TLDF) tldf -- 3.3 TrAdaboost -- 4 Experimental Design -- 4.1 Method Hyperparameters -- 5 Results -- 6 Conclusion -- 6.1 Future Work -- References -- A Proposal of Neural Networks with Intermediate Outputs -- 1 Introduction -- 2 Standard Neural Network -- 3 Proposed Method -- 3.1 Backpropagation Based on the Proposed Variant of Cost Function -- 4 Experiments -- 5 Conclusions -- References -- Addressing the Big Data Multi-class Imbalance Problem with Oversampling and Deep Learning Neural Networks -- 1 Introduction -- 2 Theoretical Framework -- 2.1 Deep Learning Multilayer Perceptron -- 2.2 Classical Sampling Methods Used to Deal with the Class Imbalance Problem -- 3 Experimental Set-Up -- 4 Results and Discussion -- 5 Conclusion -- References -- Reinforcement Learning and Neuroevolution in Flappy Bird Game -- 1 Introduction -- 2 Related Work -- 3 Flappy Bird Game -- 4 Reinforcement Learning to Flappy Bird Game -- 4.1 Q-Learning to Flappy Bird Game -- 4.2 Performance Evaluation -- 5 Neuroevolution Applied to Flappy Bird Game -- 5.1 Genetic Optimization