QTL Mapping in Crop Improvement Present Progress and Future Perspectives

QTL Mapping in Crop Improvement: Present Progress and Future Perspectives presents advancements in QTL breeding for biotic and abiotic stresses and nutritional improvement in a range of crop plants.The book presents a roadmap for future breeding for resilience to various stresses and improvement in...

Full description

Saved in:
Bibliographic Details
Main Authors Wani, Shabir Hussain, Wang, Dechun, Pratap Singh, Gyanendra
Format eBook
LanguageEnglish
Published Chantilly Elsevier Science & Technology 2022
Academic Press
Edition1
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • 5. Advances in molecular breeding techniques -- 6. Wheat QTL mapping for drought tolerance -- References -- Chapter 9: Wheat biofortification: A molecular breeding outlook -- 1. Introduction -- 2. Wheat grain components -- 2.1. Protein -- 2.2. Micronutrients -- 2.3. Pigments: Lutein, yellow pigments, and anthocyanin -- 2.4. Phytic acid -- 3. Strategies for combating hidden hunger -- 3.1. Food supplementation -- 3.2. Diversifying diet -- 3.3. Biofortification -- 4. Biofortification for GPC -- 4.1. GPCB1-Lone contributor of GPC -- 4.2. Identification of different sources of GPC -- 5. Biofortification for grain zinc content -- 5.1. Agronomic biofortification -- 5.2. Nano-fertilization -- 5.3. Exploitation of wild germplasm -- 5.4. QTLs mapped in seed for Zn content -- 5.5. Grain Zn content and transgenics -- 6. Biofortification for grain iron content -- 6.1. Localization of Fe in wheat -- 6.1.1. Conventional breeding -- 6.1.2. Transgenic approaches -- 6.1.3. Understanding gene regulation -- 6.1.4. Combinatorial approach -- 7. Biofortification for grain selenium content -- 7.1. Localization of Se in wheat -- 7.2. Variation for selenium accumulation in plants -- 7.2.1. Agronomic biofortification -- 7.2.2. Nano-fertilization -- 7.2.3. Genetic engineering -- 7.2.4. Exploiting the genetic variation -- 7.2.5. Conventional and molecular breeding approach -- 8. Phytic acid-Culprit for hidden hunger -- 9. Biofortification for pigments -- 9.1. Carotenoids -- 9.2. Anthocyanins -- 9.3. Flavonoids -- 9.4. Color variations in wheat grain -- 9.5. Molecular breeding strategies -- 9.6. Consumer preferences -- 9.7. Environmental effect on color accumulation -- 9.8. Recent progress in breeding of colored wheats -- 10. Conclusion -- References -- Further reading -- Chapter 10: Identification of tolerance for wheat rusts: Insights in recent QTL mapping efforts
  • 3.2. MetaQTL studies in wheat for drought stress -- 3.3. QTL associated with heat stress -- 3.4. QTL associated with salinity stress -- 4. Molecular breeding for abiotic stress tolerance -- 5. High-throughput genotyping platforms: Assist wheat molecular breeding -- 6. Speed breeding for accelerating plant breeding -- 7. Conclusions and future outlook -- 1IntroductionBread wheat (Triticum aestivum L.) is a key staple food crop globally and providing about 20% of the -- References -- Chapter 7: Advances in QTL mapping for biotic stress tolerance in wheat -- 1. Introduction -- 1.1. Wheat breeding -- 1.2. Resistance versus susceptible wheat breeding -- 2. Significant diseases and insect pests of wheat -- 2.1. Powdery mildew -- 2.2. Wheat blast -- 2.3. Tan spot -- 2.4. Septorias -- 2.5. Spot blotch -- 2.6. Fusarium head blight -- 2.7. Downy mildew (Sclerophthora macrospora (Sacc.)) -- 2.8. Loose smut (Ustilago tritici (Pers.) Rostr.) -- 2.9. Flag smut (Urocystis agropyri) -- 2.10. Karnal bunt (Tilletia indica) -- 2.11. Common bunt (Tilletia tritici) and dwarf bunt (Tilletia controversa) -- 2.12. Root rots and nematodes -- 2.13. Viruses -- 2.14. Insects -- 2.15. Aphids -- 2.16. Cereal leaf beetle -- 2.17. Ghujia weevil -- 2.18. Termites -- 2.19. Pink stem borer -- 2.20. White grubs -- 3. QTL approach and its importance in biotic stress improvement in wheat -- 4. QTL mapping on diseases and pests of wheat -- 4.1. Fusarium head blight -- 4.2. Powdery mildew -- 4.3. Wheat blast -- 4.4. Loose smut -- 4.5. Karnal bunt -- 4.6. Flag smut -- 4.7. Insect pests -- 5. Conclusion and future perspectives -- References -- Chapter 8: Drought stress tolerance in wheat: Recent QTL mapping advances -- 1. Introduction: Global importance of wheat -- 2. Climate change effect on wheat -- 3. Physiology of wheat plant -- 4. Drought stress mechanism in wheat
  • Intro -- QTL Mapping in Crop Improvement: Present Progress and Future Perspectives -- Copyright -- Contents -- Contributors -- Chapter 1: Recent advances in molecular marker technology for QTL mapping in plants -- 1. Introduction -- 2. Advances in marker developments -- 2.1. Sequence-based markers -- 2.2. Next-generation molecular marker technologies -- 3. Trait associations and QTL mapping -- 3.1. Mapping populations -- 3.2. Statistical tools used in QTL mapping -- 3.3. Bulk segregant analysis: Rapid approach for quantitative trait mapping -- 3.4. Advanced approaches for QTL mapping -- 3.5. QTL mapping using high-throughput marker genotyping -- 4. Conclusion -- References -- Chapter 2: A statistical perspective of gene set analysis with trait-specific QTL in molecular crop breeding -- 1. Background -- 2. Structure of gene set analysis -- 2.1. Units of gene set analysis -- 2.2. Hypotheses in gene set analysis -- 2.3. Sampling models in gene set analysis -- 2.3.1. Subject sampling model -- 2.3.2. Gene sampling model -- 3. GSA approaches for high-throughput GE studies -- 4. Statistical approach for gene set analysis with QTLs -- 4.1. Illustration of performance of the GSAQ approach -- 4.2. Distribution of NQhits statistic -- 4.3. Gene sets analysis with QTLs -- 4.4. Performance analysis of gene set selection methods based on GSAQ -- 5. Statistical perspectives of GSAQ -- 6. Limitations and future challenges of GSA -- 6.1. Biological annotation challenges -- 6.2. Methodological challenges -- Acknowledgment -- References -- Chapter 3: Crop improvement againstColletotrichum truncatum using molecular breeding approaches -- 1. Introduction -- 2. Genus Colletotrichum -- 3. The biotrophy-necrotrophy switch -- 4. Colletotrichum truncatum -- 4.1. Infection mode -- 4.2. Genome -- 4.3. Host specificity -- 4.4. Molecular basis for host-pathogen interaction
  • Chapter 13: Translating genetics into genomics: From QTL identification to candidate gene discovery in rice
  • 4.5. Genetics and genomics of host plant resistance -- 5. Soybean anthracnose -- 6. Conclusion and future prospects -- References -- Chapter 4: Molecular breeding for drought and heat stress in maize: Revisiting the progress and achievements -- 1. Introduction -- 2. Effects of drought and heat stress and plant response -- 3. Molecular breeding -- 3.1. QTL mapping: Approach and progress -- 3.1.1. Drought stress tolerance -- 3.1.2. Heat stress tolerance -- 3.2. Genome wide association studies/association mapping -- 3.3. Genomic selection -- 4. Conclusion and future perspectives -- References -- Chapter 5: Molecular breeding for improving yield in maize: Recent advances and future perspectives -- 1. Introduction -- 2. Molecular breeding -- 3. Why to use MB? -- 4. Molecular breeding for grain yield: Key considerations -- 5. Molecular breeding for yield improvement: Broad outlines -- 6. Molecular breeding schemes -- 6.1. Marker-assisted backcross breeding -- 6.1.1. Selection for gene/QTL of interest -- 6.1.2. Minimizing linkage drag -- 6.1.3. Selection for the RP -- 6.2. Marker-assisted forward breeding -- 6.3. Marker-assisted gene pyramiding -- 6.3.1. Sequential approach -- 6.3.1.1. Sister line crossing -- 6.3.1.2. Step-wise backcrossing -- 6.3.2. Simultaneous/synchronized approach -- 6.3.3. Convergent backcrossing -- 6.4. Marker-assisted recurrent selection -- 6.5. Genomic selection or genome-wide selection -- 6.5.1. Factors affecting success of GS -- 6.6. Phenotype-integrated MAS -- 7. Perspectives -- References -- Chapter 6: Abiotic stress tolerance in wheat (Triticum aestivum L.): Molecular breeding perspectives -- 1. Introduction -- 2. Impact of abiotic stresses on wheat -- 2.1. Drought stress -- 2.2. Heat stress -- 2.3. Salinity stress -- 3. Genomic regions/QTL associated with abiotic stresses -- 3.1. QTL associated with drought stress
  • 1. Introduction -- 2. Impact of biotic stresses on wheat production -- 3. Wheat rust diseases -- 4. Insects-pests affecting wheat -- 5. Viral diseases -- 6. Types of rusts attack on wheat and mode of action -- 7. Wheat stem rust -- 8. Wheat stripe rust -- 9. Wheat leaf rust -- 10. Conventional breeding and molecular techniques to control rusts attack -- 11. Stem rust resistance -- 12. Stripe rust resistance in wheat -- 13. Leaf rust resistance in wheat -- 14. QTL mapping for rusts attacks -- 15. Summary -- References -- Chapter 11: Abiotic and biotic stress tolerance in rice: Recent advances in molecular breeding approaches -- 1. Introduction -- 2. QTL mapping approaches -- 2.1. Linkage analysis -- 2.1.1. Biparental mapping populations -- 2.1.2. Multiparent mapping populations -- 3. Statistical techniques used for mapping QTLs -- 3.1. Single marker analysis (SMA) -- 3.2. Simple interval mapping (SIM) -- 3.3. Multiple QTL mapping (MQM) -- 3.3.1. Composite interval mapping (CIM) -- 3.3.2. Multiple interval mapping (MIM) -- 3.3.3. Bayesian mapping -- 3.4. Association analysis -- 4. QTLs/resistance genes identified in rice -- 4.1. Genes identified using a biparental mapping population -- 4.1.1. Biotic stresses -- 4.1.2. Abiotic stress -- 4.2. Genes identified using association mapping -- 5. Conclusion -- References -- Chapter 12: Genetic improvement of rice grain quality -- 1. Introduction -- 2. Rice grain quality evaluation according to consumers preference -- 2.1. Cooking and eating quality -- 2.2. Textural and sensory quality -- 2.3. Nutritional quality -- 3. Genes/QTL for rice grain quality -- 3.1. Milling quality -- 3.2. Appearance quality (shape, size, length, and chalkiness) -- 3.3. Cooking quality -- 3.3.1. Amylose content -- 3.3.2. Gelatinization temperature -- 3.3.3. Gel consistency -- 4. Conclusion -- References